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We derive the equations of time-independent stochastic quantization, without refer-

ence to an unphysical 5th time, from the principle of gauge equivalence. It asserts that

probability distributions P that give the same expectation values for gauge-invariant ob-

servables 〈W 〉 =
∫

dA W P are physically indistiguishable. This method escapes the

Gribov critique. We derive an exact system of equations that closely resembles the Dyson-

Schwinger equations of Faddeev-Popov theory. The system is truncated, and solved non-

perturbatively, by means of a power law Ansatz, for the critical exponents that characterize

the asymptotic form at k ≈ 0 of the gluon propagator in Landau gauge. For the tranverse

and longitudinal parts, we find respectively DT ∼ (k2)−1−αT ≈ (k2)0.043, suppressed and

in fact vanishing, though weakly, and DL ∼ a (k2)−1−αL ≈ a (k2)−1.521, enhanced, with

αT = −2αL. Although the longitudinal part vanishes with the gauge parameter a in the

Landau-gauge limit, a→ 0, there are vertices of order a−1 so, counter-intuitively, the lon-

gitudinal part of the gluon propagator does contribute in internal lines in Landau gauge,

replacing the ghost that occurs in Faddeev-Popov theory. We compare our results with

the corresponding results in Faddeev-Popov theory.



1. Introduction

1.1. Some recent developments in non-perturbative QCD

The problem of the strong interaction presents an exciting challenge. One would like to

understand how and why QCD describes a world of color-neutral hadrons with a mass gap,

even though it appears perturbatively to be a theory of unconfined and massless gluons

and quarks. Clearly an understanding of non-Abelian gauge theory at the non-perturbative

level is required. Happily, there has recently developed a convergence of results by dif-

ferent methods: (i) non-perturbative solutions of the truncated Dyson-Schwinger (DS)

equations in Faddeev-Popov theory, (ii) numerical evaluation of gauge-fixed, lattice QCD

propagators, and (iii) exact analytic results. The agreement between these very different

methods almost 5 decades after the appearance of the original article of Yang and Mills [1],

would indicate that by (ii) we are beginning to get reliable values of the gluon propagator

in the unbroken phase, and by (i) an understanding of the mechanism that determines

it. This motivates the present investigation in which we derive the DS equations of time-

independent stochastic quantization and solve them by truncation and a power-law Ansatz

for the gluon propagator in the asymptotic, low-momentum régime. In accordance with

earlier results by methods (i), (ii), and (iii), we find that, compared to the free propa-

gator 1/k2, the would-be physical, transverse component of the gluon propagator is short

range, while the unphysical, longitudinal component is long range.

As concerns (i), solutions of the DS equations, the decisive step was taken in [2],

where a solution of the truncated DS equations in Faddeev-Popov quantization in Landau

gauge was obtained for which the transverse gluon propagator is short range, while the

ghost propagator is long range. These properties were confirmed in subsequent DS calcu-

lations, using a variety of approximations for the vertex [3], [4], [5], and [6]. More recent

calculations extend the asymptotic infrared and ultraviolet solutions to finite momentum

k, without angular approximation [7], [8]. All these calculations1 give a transverse gluon

propagator in Landau gauge DT (k) that is highly suppressed in the infrared compared

to the free massless propagator 1/k2, and that in fact vanishes limk→0D
T (k) = 0, at

k = 0, in some cases weakly, like a small positive power of k. Indeed, according to the

present calculation it vanishes like (k2)0.043. A review of DS equations in QCD may be

1 Stingl [9] had earlier obtained a solution of the DS equation with the property that DT (k)

vanishes at k = 0, without however including the ghost loop, whereas the ghost loop gives the

dominant contribution in the infrared region in the recent solutions.
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found in [10]. In the present work we shall discover a close conection between the ghost

propagator in Faddeev-Popov theory and the longitudinal part of the gluon propagator in

time-independent stochastic quantization.

Concerning (ii), numerical studies, it is striking that an accumulation of numerical

evaluations of the gluon propagator in Landau gauge also show qualitive suppression of the

gluon propagator at low momentum, both in 3-dimensions on relatively large lattices, [11],

[12], [13], and in 4 dimensions, [14], [15], [16], [17]. Suppression of the gluon propagator and

enhancement of the ghost propagator at low momentum has been reported by [18], [19], and

[20]. Similar numerical results were obtained in Coulomb gauge, where an extrapolation

to infinite lattice volume of the 3-dimensionally transverse, would-be physical, equal-time

gluon propagator Dij(~k) was consistent with its vanishing at ~k = 0, [21]. In QCD in

the Coulomb gauge, the instantaneous Coulomb propagator, D44, is closely related to the

ghost or Faddeev-Popov propagator, and is a strong candidate for a confining potential.

Significantly, D44 was found to be long range [21].

A recent numerical calculation in the Landau gauge, [16], reports a finite value of

DT (k) at k = 0. This is strongly suppressed compared to 1/k2, and suffices to exclude a

free massless gluon. It might be thought that the finite value of DT (0) reported in [16]

contradicts the zero value, DT (0) = 0, found here. However it is difficult to distinguish

numerically between a finite value at k = 0 and one that vanishes weakly, like (k2)γ , with

a small value for the infrared anomalous dimension such as γ = 0.043 found here. For

this function is almost constant down to very low k, and then veers toward zero with an

infinite slope. Moreover a numerical determination of the continuum propagator at k = 0

requires an extrapolation to infinite lattice volume. To establish a discrepancy it would be

necessary to take γ as a fitting parameter, and determine the numerical uncertainty in this

quantity after extrapolation to infinite lattice volume, and this has not been done. Present

numerical and analytic results are not inconsistent, within the considerable uncertainty of

the numerical extrapolation to infinite lattice volume, and both agree that there is strong

suppression compared to 1/k2.

Infrared suppression of the gluon propagator D(k) and enhancement of the ghost

propagator G(k) in Landau gauge was first found by Gribov, using avowedly rough ap-

proximations [22]. He obtained the formulas, D(k) = k2/[(k2)2 + M4], and, in the in-

frared, G(k) ∼ 1/(k2)2, by restricting the region of functional integration to the interior
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of the Gribov horizon in order to avoid Gribov copies.2 In Coulomb gauge he also ob-

tained a long-range Coulomb potential. Concerning (iii), exact analytic results, it was

subsequently found, [25] and [26], that restriction to the interior of the Gribov horizon,

enforced by a horizon condition, yields at k = 0, both the vanishing of the gluon propa-

gator limk→0D(k) = 0 in Landau and Coulomb gauge, and the enhancement of the ghost

propagator limk→0 k
2G(k) = ∞.3

It was at first surprising that the solution of the DS equations obtained in [2], [3], [4],

and [5] agreed with these exact results that are a consequence of cutting off the functional

integral at the Gribov horizon, for this condition was not imposed in solving the DS

equations. However it was subsequently pointed out [6] that the DS equations in Faddeev-

Popov theory depend only on the integrand, and the fact that the integral of a derivative

vanishes provided only that the integrand vanishes on the boundary. The key point is

that the integrand does vanish on the Gribov horizon for the Faddeev-Popov determinent,

det[−D(A) · ∂], vanishes there (as explained in footnote 2). Thus Gribov’s prescription to

cut off the functional integral at the (first) Gribov horizon, is not a constraint that changes

the DS equations, but rather it resolves an ambiguity in the solution of these equations [6].

The cut-off at the first Gribov horizon assures that both the gluon and ghost Euclidean

propagators are positive, which is a property of the solutions obtained for the truncated

DS equations. Moreover the solution of the DS equations in Faddeev-Popov theory with a

cut-off at the Gribov horizon is the only one for which a comparison with numerical gauge

fixing to the lattice Landau gauge is (approximately) justified. For as explained in footnote

2 We remind the reader that numerical gauge-fixing to the Landau gauge is achieved by mini-

mizing, with respect to local gauge transformations g(x), a lattice analog of FA(g) =
∫

d4x|gA|2.

At any minimum, this functional is (a) stationary, and (b) the matrix of second derivatives

is non-negative. These conditions correspond to (a) the Landau gauge condition ∂ · A = 0,

and (b) the positivity of the Faddeev-Popov operator −D(A) · ∂ which, moreover is symmetric

−D(A) ·∂ = −∂ ·D(A), for ∂ ·A = 0. Condition (b) defines the Gribov region, so numerical studies

of the Landau gauge automatically select configurations within the Gribov region. Positivity of

−∂ · D(A) means that all its eigenvalues λn are positive, and the boundary of the Gribov region,

known as the (first) Gribov horizon, is where the first (non-trivial) eigenvalue vanishes. Thus the

Faddeev-Popov determinent, det[−D(A) · ∂] =
∏

n
λn, which is the product of the eigenvalues,

is positive inside the Gribov horizon and vanishes on it. These considerations do not apply to

numerical gauge fixing to the Laplacian gauge [23], [24].
3 It is noteworthy that the confinement criterion of Kugo and Ojima [27] and [28] also entails

limk→0 k2G(k) = ∞.
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2, numerical gauge fixing to the Landau gauge automatically produces a configuration that

lies inside the Gribov horizon. Thus a consistent picture emerges of the gluon and ghost

propagators in QCD using the different methods (i), (ii) and (iii).

1.2. Diffulties of Faddeev-Popov method at non-perturbative level

The DS calculations [2] – [5] rely on Faddeev-Popov theory which however is sub-

ject to the well-known critiques of Gribov [22] and Singer [29]. At the perturbative level,

Faddeev-Popov theory is unexceptionable, and elegant BRST proofs are available of per-

turbative renormalizability and perturbative unitarity [30]. In lattice gauge theory however

the BRST method fails because the total number of Gribov copies is even, but they con-

tribute with opposite signs, leading to an exact cancellation [31], [32]. In continuum gauge

theory, the Faddeev-Popov-BRST method may nevertheless be formally correct at the

non-perturbative level without a cut-off at the Gribov horizon, if ones sums over all signed

Gribov copies [33], [34]. However even if this is true, it would imply large cancellations be-

tween copies, that may amplify the error of an approximate non-perturbative calculation,

and even the Euclidean gluon propagator D(k) is not necessarily positive. Alternatively,

one may choose the solution of the DS equations in Faddeev-Popov theory that corre-

sponds to a cut-off at the first Gribov horizon, which indeed is our interpretation of the

solutions of [2] — [8]. Hopefully, this is an excellent approximation. But it remains an ad

hoc prescription that is not correct in principle because of the existence of Gribov copies

inside the Gribov horizon [35] and [36].

Wilson’s lattice gauge theory provides a quantization that is both theoretically sound

and well suited to numerical simulation. It also provides a simple analytic model of con-

finement in QCD by giving an area law for Wilson loops in the strong-coupling limit. A

striking feature of lattice gauge theory is that both the numerical simulations and the

strong-coupling expansion are manifestly gauge invariant. This manifest gauge invariance

provides a paradigm for continuing efforts to understand confinement in QCD. Neverthe-

less it may be worthwile to pursue other approaches. The vexing problem of bound states

in quantum field theory is particularly urgent in QCD where confinement causes all phys-

ical particles to be bound states of the fundamental quark and gluon constituents. In this

regard it is noteworthy that even the simplest of all bound-state problems, the Hydrogen

atom, is not easily solved in a gauge-invariant formulation.
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1.3. Review of stochastic quantization

In order to avoid the difficulties just mentioned of the Faddeev-Popov method, we

turn to stochastic quantization of gauge fields for, as we shall see, this method provides a

correct continuum quantization at the non-perturbative level. Stochastic quantization has

been developed by a number of authors [37], [38], who have expressed the solution as a

functional integral [39], and demonstrated the renormalizability of this approach [40], [41].

A systematic development is presented in [42], [43], [44], [45], [46], [47], reviewed in [48],

that includes the 4-and 5-dimensional Dyson-Schwinger equation for the quantum effec-

tive action, an extension of the method to gravity, and gauge-invariant regularization by

smoothing in the 5th time. Renormalizability has also been established by an elaboration

of BRST techniques [49], [50]. Stochastic quantization may be and has been exactly sim-

ulated numerically including on rather large lattices, of volume (48)4, [51], [52], [53], [54],

[55]. This suggests the possibility of a promising interplay of DS and numerical methods.

In its original formulation [37], stochastic quantization relies on the observation

that the formal Euclidean proabability distribution P0(A) = N exp[−SYM(A)], with 4-

dimensional Euclidean Yang-Mills action SYM(A), is the equilibrium distribution of the

stochastic process defined by the equation,

∂P

∂t
=

∫

d4x
δ

δAa
µ(x)

( δP

δAa
µ(x)

+
δSYM

δAa
µ(x)

P
)

. (1.1)

Indeed it is obvious that P0(A) is a time-independent solution of this equation. Here t

is an artificial 5th time that is a continuum analog of the number of sweeps in a Monte

Carlo simulation of the Euclidean theory defined by the action SYM(A). As explained in

sec. 3, this equation has the form of the diffusion equation with “drift force” − δSYM

δAa
µ(x)

, and

is known as the Fokker-Planck equation. The same stochastic process may equivalently be

represented by the Langevin equation

∂Aa
µ

∂t
= −

δSYM

δAa
µ

+ ηa
µ, (1.2)

where Aa
µ = Aa

µ(x, t) depends on the artificial 5th time, and corresponds in a Monte-Carlo

simulation to the configuration on the lattice with points xµ, with µ = 1, ...4 at sweep t.

Here ηa
µ = ηa

µ(x, t) is Gaussian white noise defined by 〈ηa
µ(x, t)〉 = 0 and 〈ηb

ν(x, t)ηa
µ(y, t′)〉 =

2δ(x− y)δµνδ
abδ(t− t′)〉. If N exp[−SYM(A)] were a normalizable probability distribution

— which it is not — every normalized solution to (1.1) would relax to it as equilibrium
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distribution. However the process defined by (1.1) or (1.2) does not provide a restoring

force in gauge orbit directions, so probability escapes to infinity along the gauge orbits, and

as a result P (A, t) does not relax to a well-defined limitiing distribution limt→∞ P (A, t) 6=

N exp[−SYM(A)]. Nevertheless, according to [37], expectation values 〈O(A)〉t of gauge-

invariant quantities O(A) calculated at fixed but finite time t according to either of the

above equations do relax to the desired Euclidean expectation value, 〈O〉 = limt→∞〈O〉t.

Unfortunately the renormalization program cannot be carried out in this scheme as

stated, because that requires that gauge-non-invariant correlators also be well defined. A

remedy is provided by the observation [38] that the Langevin equation may be modified

by the addition of an infinitesimal gauge transformation, Dac
µ vc = (∂µδ

ac + fabcAb
µ)vc,

∂Aa
µ

∂t
= −

δS

δAa
µ

+Dac
µ vc + ηa

µ. (1.3)

Clearly this cannot alter the expecation-value of gauge-invariant quantities. Symmetry

and power-counting arguments determine va = a−1∂λA
a
λ = a−1∂ · Aa, where a is a free

parameter. For a > 0, the new term, that is tangent to the gauge orbit, provides a restoring

force along gauge orbit directions, so gauge-non-invariant correlators also exist.4 The new

scheme is renormalizable. Only a harmless gauge-transformation has been introduced,

so the Gribov problem of globally correct gauge-fixing is by-passed, and a continuum

quantization of gauge fields that is correct at the non-perturbative level has been achieved.

The modified Langevin equation is equivalent to the modified Fokker-Planck equation

∂P

∂t
=

∫

d4x
δ

δAa
µ(x)

( δP

δAa
µ(x)

−Ka
µ(x)P

)

, (1.4)

where the “drift force” now includes the infinitesimal gauge transformation [38],

Ka
µ(x) ≡ −

δSYM

δAa
µ(x)

+ a−1Dac
µ ∂ ·Ac(x). (1.5)

4 To establish that the new force is globally restoring, we note that the hilbert norm of A is

decreasing under the flow defined by the new force alone, Ȧµ = a−1Dµ∂ ·A. We have ∂||A||2/∂t =

2(Aµ, Ȧµ) = 2a−1(Aµ, Dµ∂ · A) = 2a−1(Aµ, ∂µ∂ · A) = −2a−1||∂ · A||2 ≤ 0. This also shows

that the region of equilibrium under this force is the set of transverse configurations, ∂ · A = 0.

Similarly, from ∂||∂ ·A||2/∂t = 2(∂ ·A,∂ ·Ȧ) = 2a−1(∂ ·A,∂ ·D∂ ·A) it follows that this equilibrium

is stable inside the Gribov horizon, where −∂ · D is a positive operator, and unstable outside it.
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The additional “force” is not conservative, and cannot be written, like the first term, as

the gradient of some 4-dimensional gauge-fixing action, a−1Dac
µ ∂ ·Ac(x) 6= −

δSgf

δAa
µ(x)

. With

this term, the normalized solutions P (A, t) to (1.4) do relax to an equilibrium distribution

limt→∞ P (A, t) = P (A), and Euclidean expectation values are given by the 4-dimensional

functional integral, 〈O〉 =
∫

dA O(A)P (A). Although we cannot write P (A) explicitly

because the force is not conservative, we do know that it is the normalized solution of the

time-independent Fokker-Planck equation

HFPP ≡

∫

d4x
δ

δAa
µ(x)

(

−
δP

δAa
µ(x)

+Ka
µP

)

= 0. (1.6)

This equation defines what we call “time-independent stochastic quantization”, and HFP

is called the “Fokker-Planck hamiltonian”. The solution P (A) of this equation provides a

satisfactory non-perturbative quantization of gauge fields.

[To avoid possible confusion of terminology, we note that stochastic quantization,

whether in the time-dependent or time-independent formulation, — where “time” is the

artificial 5th time — increases the number of dimensions by one as compared to the cor-

responding standard Faddeev-Popov formulation of gauge field theory. Thus the solution

of the time-dependent Fokker-Planck equation (1.4) can be usefully represented [39] as a

functional integral with a local 5-dimensional action I =
∫

dtd4xL5, whereas in Faddeev-

Popov theory, expectation values may be calculated by a functional integral with a local

4-dimensional action S =
∫

d4x[(1/4)F 2
µν + ...]. Likewise the Fokker-Planck “hamilto-

nian” HFP determines, by the time-independent Fokker-Planck equation HFPP = 0, a

Euclidean probability distribution P (A) whose argument is a field A(x) that is a func-

tion in 4-dimensional space-time with points xµ, µ = 1, ...4. By comparison the quantum

mechanical hamiltonian HQM in ordinary quantum field theory determines, by the time-

independent Schrödinger equation HQMΨ = EΨ, a wave-functional Ψ(A), whose argument

is a field A(~x) that is a function in ordinary 3-space ~x = (x1, x2, x3). Thus HFP is not

a quantum mechanical hamiltonian at all, but rather, it claims the name “hamiltonian”

as the generator of time translations in the time-dependent Fokker-Planck equation (1.4),

where the “time” is the artificial 5th time. Unlike the quantum-mechanical hamiltonian for-

mulation, time-independent stochastic quantization is 4-dimensionally Lorentz (Euclidean)

covariant.]
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Despite the development of stochastic quantization in [37] — [50] it has apparently

not so far been used for non-perturbative calculations in QCD, apart from [6].5 This may

possibly be due to the complication caused by the extra “time” variable. Although the

time-dependent formulation allows an elegant representation, with a local 5-dimensional

action, it has the complication in practice that the gluon propagator depends on two

invariants D(k2, ω) instead of only one D(k2). This prevents a simple power Ansatz for

the infrared behavior 1/(k2)1+α that allows one to determine the infrared behavior of

the 4-dimensional theory self-consistently. For this reason we turn to time-independent

stochastic quantization, where the correlators have the same number of invariants as in

Faddeev-Popov theory.

1.4. Outline of the present article

We shall not use the 5-dimensional formulation here, but only the 4-dimensional, time-

independent Fokker-Planck equation (1.6). The solution P (A) to this equation cannot be

represented as a functional integral over a local 4-dimensional action. Nor shall we attempt

to construct an explicit solution to (1.6). Our strategy instead will be to convert it into a

system of tractable DS equations for the correlators.

As a first step, we convert (1.6) into the DS equation, (6.3) below, for the quantum

effective action Γ. The DS equation for Γ appears relatively complicated, with a second-

order structure inherited from the second-order operator in (1.6). The main methodological

innovation of the present approach is that the second-order equation for Γ is replaced, in

secs. 6 and 7, by the much simpler DS equation (6.6) for a quantity, Qa
µ(x), that we call

“the quantum effective drift force”. Indeed the new equation Qa
µ(x) = Ka

µ(x) + (loop

integrals), where Ka
µ(x) = − δSYM

δAa
µ(x) + a−1(Dµ∂ · A)c, has the same structure as the first-

order DS equation for Γ in Faddeev-Popov theory, δΓ
δAa

µ(x) = δS
δAa

µ(x) + (loop integrals). In

both of these equations, the leading term may be interpreted as a drift force and, most

helpfully for the renormalization program, it is local in A(x).

In the present work we give an improved treatment, as compared to [6], of the longi-

tudinal degrees of freedom in the Landau-gauge limit a → 0. In that work we integrated

out the longitudinal degrees of freedom in the Landau-gauge limit a → 0. This gave a

time-independent Fokker-Planck equation for the transverse degrees of freedom only, with

5 The equations of stochastic quantization have however been applied to dissipative problems

in QCD, where t is the physical time, and x physical 3-space, [56].
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an effective drift force that was however non-polynomial and non-local.6 By contrast, in

the present work, the difficulty of a non-polynomial drift force is avoided by retaining the

longitudinal degrees of freedom. Of course the longitudinal part of the propagator vanishes

with the gauge-parameter a in the Landau-gauge limit lim → 0. However the drift force

(1.5) gives a vertex that diverges like 1/a and so, counter-intuitively, the longitudinal part

of the propagator in the Landau gauge limit gives a finite contribution in internal loops,

somewhat like the ghost in Faddeev-Popov theory.

We shall be satisfied here to calculate only the infrared asymptotic form of the propa-

gator, because that is where the challenging, non-perturbative confining phenomena man-

ifest themselves. At high momentum, QCD is perturbative, and it has been verified to

one-loop order by various methods [57]and [46], including the background field method [58],

that stochastic quantization yields the standard β-function. We leave for another occasion

a numerical calculation which would be necessary to connect the high- and low-momentum

limits.

Since we use only the time-independent formulation here, we present, in secs. 2 and 3,

a new derivation of eq. (1.6) that does not refer to the unphysical 5th time. At the end

of sec. 3 the Minkowskian form of time-independent stochastic quantization is presented.

[Some readers may prefer to go directly to sec. 4, which begins with (1.6).] The new

derivation is more powerful, and yields new results, in particular, the Ward identity of

Appendix C, and the proof in Appendix A that the kernel of the Fokker-Planck hamiltonian

for quarks depends on gauge parameters only. We shall derive it from the obvious principle

of gauge equivalence which asserts that probability distributions P (A) that give the same

expectation values for gauge-invariant observables 〈W 〉 =
∫

dA W (A) P (A) are physically

indistiguishable. We show that time-independent stochastic quantization provides a class of

positive, normalized proabability distributions P (A, a), parametrized by a gauge parameter

a that are gauge equivalent P (A, a1) ∼ P (A, a2), and that includes includes the Yang-Mills

distribution N exp(−SYM) as a limiting case. This method of quantization of gauge fields,

in which the unphysical degrees of freedom are retained but controlled, is closely related

to the physics of our solution of the DS equations. Indeed we find that the physical

degrees of freedom are short range, whereas the unphysical degrees of freedom are not only

present but of long range. In Appendix A, we extend the method to include quarks, and

6 This was in turn decomposed into a conservative force that reproduced the Faddeev-Popov

determinent, plus a second term that was neglected in the solution found in [6].
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in Appendix B, to lattice gauge theory. In Appendix C, we derive a Ward identity that

controls the divergences of the theory.

In sec. 8 we derive the explicit form of the DS equation for the gluon propagator. In

secs. 9 – 11 we adopt a simple truncation scheme, and by means of a power-law Ansatz we

solve for the infrared critical exponents that characterize the gluon propagator in Landau

gauge asymptotically, at low momentum. The transverse part of the gluon propagator is

short range, and the longitudinal part long range. In the concluding section we compare

our results with calculations in Faddeev-Popov theory, and we interpret their qualitative

features in a confinement scenario. We also suggest some challenging open problems, and

possibilities for comparison with numerical simulation in lattice gauge theory.

2. Gauge equivalence

We first consider Euclidean gauge theory and later the Minkowskian case. Non-abelian

gauge theories are described by the Yang-Mills action SYM(A) = (1/4)
∫

d4x(F a
µν)2, where

F a
µν = ∂µA

a
ν −∂νA

a
µ +gfabcAb

µA
c
ν . The Euclidean quantum field theory is formally defined

by the probability distribution PYM(A) = N exp[−SYM(A)], and by the expectation-values

〈W 〉 =
∫

dA W (A) PYM(A), normalized so 〈1〉 = 1. The challenge of quantizing a non-

abelian gauge theory is that PYM(A) is not really normalizable because of the infinite

volume of the local gauge group.

The challenge would be hopeless, but for the fact that we are interested only in

observables that are invariant under local gauge transformations, W (gA) = W (A),

for all g(x), where gAµ = g−1Aµg + g−1∂µg. This suggests the notion of gauge-

equivalent probability distributions. Two probability distributions are gauge equivalent,

P1(A) ∼ P2(A), if and only if 〈W 〉1 = 〈W 〉2, for all gauge-invariant observables W , where

〈W 〉i =
∫

dA W (A) Pi(A). Gauge equivalence of probability distributions is dual to

gauge invariance of observables. Distributions that are gauge-equivalent are physically

indistinguishable. Our solution to the quantization problem will be to replace the formal

probability distribution N exp[−SYM(A)], by a normalizable distribution that is gauge-

equivalent to it. More precisely we shall exhibit a class of gauge-equivalent normalized

distributions that includes N exp[−SYM(A)] as a limiting case.
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3. A machine that makes gauge-equivalent probability distributions

The construction of gauge-equivalent probability distributions relies on an equation

that has the same form as the time-independent Fokker-Planck equation that is used to

describe diffusion in the presence of a drift force. In this section, for simplicity, we deal

with continuum gauge fields, or gluodynamics, only. The extension to quarks is given in

Appendix A, and to lattice gauge theory in Appendix B.

In order to simplify the appearance of various equations, we shall, as convenient, use

the index notation Ax, instead of Aa
µ(x), where the subscript x represents the triplet x, µ, a.

We use discrete notation and the summation convention on the new index so, for example,
∂Jx

∂Ax
replaces

∫

d4x
δJa

µ(x)

δAa
µ(x) .

Let P (A) be a positive, P (A) > 0, normalized,
∫

dA P (A) = 1, probability distribu-

tion or concentration. In simple diffusion theory there is associated with this distribution

a current,

Jx = − h̄
∂P

∂Ax
+KxP, (3.1)

that is composed of a diffusive term, − h̄ ∂P
∂Ax

, proportional to the gradient of the concen-

tration, with diffusion constant h̄, and a drift term, KxP . Here Kx is the drift force, as in

Ohm’s law with unit conductivity. We have introduced h̄ for future convenience for a loop

expansion which is an expansion in powers of h̄. Conservation of probability is expressed

by the equation of continuity ∂P
∂t = − ∂Jx

∂Ax
. The analogy of interest to us here is associated

with the time-independent situation only.7 In this case the current is divergenceless

∂Jx

∂Ax
= 0, (3.2)

which reads

HFPP ≡
∂

∂Ax
(− h̄

∂

∂Ax
+Kx) P = 0. (3.3)

This is the time-independent diffusion equation with drift force Kx. We call the linear

operator defined here the Fokker-Planck “hamiltonian”, although HFP is not hermitian,

7 Stochastic quantization [37], including a drift force tangent to the gauge orbit [38], has

traditionally been based on the time-dependent Fokker-Planck equation ∂P
∂t

= −HFPP , and relied

on relaxation of the stochastic process to an equilibrium distribution that satisfies HFPP = 0.

Here t is an additional, unphysical time variable that corresponds to computer time in a Monte

Carlo simulation. By contrast, in the present article, the quantization of the non-Abelian gauge

field follows from the geometrical principle of gauge equivalence, from which we derive the time-

independent equation HFPP = 0 directly, without reference to the additional time variable.
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as it would be in quantum mechanics, and it certainly is not the quantum mechanical

hamiltonian of the gauge field.

We must be sure to choose a drift force that is restoring, so this equation determines a

positive normalized distribution P (A). If the drift force were conservative Kx = − ∂SYM

∂Ax
,

then the normalized solution would be P (A) = N exp(−SYM). Gauge invariance of the

Yang-Mills action, Da
µ

δSYM

δAa
µ(x) = 0, means however that the conservative drift force − δSYM

δAµ(x)

provides no restoring force in gauge-orbit directions. This is remedied by introducing an

additional force Ka
gt,µ(x) = Dac

µ vc that is an infinitesimal gauge transformation, so the

drift force is made of a conservative piece and a piece that is tangent to the gauge orbit,

Ka
µ(x) = −

δSYM

δAa
µ(x)

+Ka
gt,µ(x)

= −
δSYM

δAa
µ(x)

+Dac
µ vc.

(3.4)

Geometrically, the drift force is a vector field or flow, and it is intuitively clear that a flow

that is tangent to the gauge orbit has no effect on gauge-invariant observables. We will

not fail to choose va(x;A) so that Dµv is a restoring force, to insure that (3.3) possesses a

positive, normalized solution. Apart from this restoring property, va(x;A) may in principle

be an arbitrary functional of A. The time-independent Fokker-Planck equation reads

explicitly

HFPP ≡

∫

d4x
δ

δAa
µ(x)

[

− h̄
δP

δAa
µ(x)

+
(

−
δSYM

δAa
µ(x)

+Dac
µ vc

)

P
]

= 0. (3.5)

This equation is a machine that produces normalized probability distributions Pv(A) that

are gauge equivalent to N exp(−SYM).

We now prove the basic result. Positive, normalized solutions of the diffusion equation

(3.5) for different v are gauge equivalent Pv ∼ Pv′ , and include N exp[−SYM(A)] as a

limiting case. Our solution to the problem of quantizing a gauge field is to use any one

of the Pv(A) to calculate expectation-values of gauge-invariant observables. We consider

observables that are invariant under infinitesimal local gauge transformations, namely that

satisfy Ga(x)W = 0. Here Ga(x) ≡ − Dac
µ

δ
δAc

µ(x) , is the generator of an infinitesimal gauge

transformation, with local Lie algebra, [Ga(x), Gb(y)] = δ(x−y)fabcGc(x), and (DµX)a ≡

∂µX
a + gfabcAb

µX
c is the gauge-covariant derivative in the adjoint representation.

12



The proof relies upon the decomposition of HFP,

HFP = Hinv − (v,G)†

Hinv ≡

∫

d4x
δ

δAa
µ(x)

[

− h̄
δ

δAa
µ(x)

−
δSYM

δAa
µ(x)

]

(v,G) ≡ −

∫

d4x vaDac
µ

δ

δAc
µ(x)

=

∫

d4x (Dµv)
a δ

δAa
µ(x)

− (v,G)† = (G, v) =

∫

d4x
δ

δAa
µ(x)

(Dµv)
a

(3.6)

where † is the adjoint with respect to the inner product defined by
∫

dA, and (v,G) is

the generator of the local gauge transformation va(x). Note that Hinv is a gauge-invariant

operator, [Ga(x), Hinv] = 0, that has exp(−SYM) as a null vector, Hinv exp(−SYM) = 0.

Let P (A) be the normalized solution of HFPP = 0 for given v. It is sufficient to show that

〈W 〉 =
∫

dA W (A)P (A) is independent of va(x) for gauge-invariant observables W . Let

δva(x) be an arbitrary infinitesimal variation of va(x). The corresponding change in P (A)

satisfies δHFPP +HFPδP = 0, where δHFP = (G, δv), so

δP = − H−1
FP δHFP P. (3.7)

Note that δHFP P has the form of a divergence, so it is orthogonal to the null space of HFP.

This change in P induces the change in expectation value

δ〈W 〉 =

∫

dA δP W

= −

∫

dA (H−1
FP δHFP P ) W

= −

∫

dA P [δH
†
FP (H

†
FP)−1 W ]

=

∫

dA P [(δv, G) (H
†
FP)−1 W ],

(3.8)

where H
†
FP = H

†
inv − (v,G). It is sufficient to show that δ〈W 〉 = 0. The proof is almost

immediate, but we must verify that the dependence of va(x;A) and δva(x;A) on A does

not cause any problem. Recall that W is gauge invariant, Ga(x)W = 0, so we have

H
†
FPW = H

†
invW , which implies that H

†
FPW is gauge invariant,

Ga(x) H
†
FPW = Ga(x) H

†
invW = 0.

13



It follows by induction that (H
†
FP)nW = (H

†
inv)

nW is gauge invariant for any integer n,

Ga(x) (H
†
FP)nW = 0, which implies that for any analytic function, f(H

†
FP)W = f(H

†
inv)W

is gauge invariant Ga(x) f(H
†
FP) W = 0. This holds in particular for f(z) = 1/z, and we

have Ga(x) (H
†
FP)−1 W = 0. This implies that δ〈W 〉 = 0 as asserted. Note also that if

v = 0, then the formal solution is P = N exp(−SYM)/h̄.

This proof does not rely on Faddeev-Popov gauge-fixing which would require a gauge

choice that selects a single representative on each gauge orbit. The Gribov critique is by-

passed, and Singer’s theorem [29] does not apply. Gauge equivalence is a weaker condition

than gauge fixing, but sufficient for physics. In the present approach we do not attempt to

eliminate “unphysical” variables and keep only “physical” degrees of freedom. Rather we

work in the full A-space, keeping all variables, but taming the gauge degrees of freedom by

exploiting the freedom of gauge equivalence. It is the unphysical degrees of freedom that

provide a long-range correlator, and a strong candidate for a confining potential.

Another way to obtain a gauge-equivalent probability distribution is by gauge trans-

formation. If our class of gauge-equivalent probability distributions Pv(A) is large enough,

then it is possible to absorb an infinitesimal gauge transformation δAµ = Dµǫ by an ap-

propriate change δv of v, Pv(A + Dµǫ) = Pv+δv(A). This is true and leads to a useful

Ward identity that is derived in Appendix C.

There remains to choose v so it has a globally restoring property. An optimal way to

do this is to require that the force Dµv, that is tangent to the gauge orbit, points along the

direction of steepest descent, restricted to gauge-orbit directions, of a conveniently chosen

functional. For the minimizing functional, we take the Hilbert norm-square, F (A) =

||A||2 =
∫

d4x |A|2, and we consider a variation δAµ = ηDµv that is tangent to the gauge

orbit in the v-direction, where η is an infinitesimal parameter. We have

δF = 2(A, δA) = 2η(A,Dv) = 2η

∫

d4x Aa
µ (∂µv

a + fabcAb
µv

c)

= − 2η

∫

d4x ∂µA
a
µ v

a.

(3.9)

Thus the direction of steepest descent, restricted to gauge orbit directions, is given by

va = a−1∂µA
a
µ, (3.10)

where a > 0 is a positive constant. We shall take this optimal choice for v, so the total

drift force that appears in the diffusion equation is given by8

Ka
λ(x;A) = Dac

µ F c
µλ + a−1Dac

λ ∂µA
c
µ. (3.11)

8 An alternative choice suitable for the Higgs phase was proposed in [50].
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Here a is a dimensionless gauge parameter. This completes the specification of the time-

independent stochastic quantization.

The drift force a−1Dλ∂µAµ tends to concentrate the probability distribution P (A)

close to its region of stable equilibrium, especially if a is small. Let us find the region of

stable equilibrium. From (3.9) we see that δF < 0 unless A satisfies ∂µAµ = 0. This defines

the region of equilibrium, which may be stable or unstable. The region of (local) stable

equilibrium is determined by the additional condition that the second variation be non-

negative δ2F > 0, for all variations δA tangent to the gauge orbit, namely δA = Dµǫ, for

arbitrary ǫa(x). We have just found that the first variation is given by δF = −2(ǫ, ∂µAµ).

So we have, for the second variation, δ2F = −2(ǫ, ∂µδAµ) = −2(ǫ, ∂µDµǫ). Thus the region

of stable equilibrium is determined by the two conditions ∂µAµ = 0 and − ∂µDµ(A) > 0,

namely transverse configurations A, for which the Faddeev-Popov operator − ∂µDµ(A) is

positive. These two conditions define the Gribov region. We expect that in the limit a→ 0,

both conditions will be satisfied. This is the Landau gauge, with probability restricted to

the interior of the first Gribov horizon.

So far we have discussed Euclidean quantum field theory, which is characterized by el-

liptic differential operators. However the above considerations also apply to the Minkowski

case. Here the formal weight is Q(A) = N exp[iSYM], where SYM = (−1/4)
∫

d4xFµνFµν

is the Minkowskian Yang-Mills action, where indices are raised and lowered by the metric

gλµ = gλµ = diag(1, 1, 1,−1). Expectation-values of gauge-invariant time-ordered observ-

ables, are given by the Feynman path integral 〈W 〉 =
∫

dA W (A) Q(A), with 〈1〉 = 1.

Instead of eq. (3.5), we take gauge-equivalent configurations that are solution of the equa-

tion

HMQ = 0, (3.12)

where HM is the corresponding Minkowskian “hamiltonian”

HM ≡

∫

d4x (i)
δ

δAκ(x)
gκλ

[

(ih̄)
δ

δAλ(x)
+Kλ(x;A)

]

(3.13)

and the “drift force” is given by

Kλ(x;A) ≡
δSYM

δAλ(x)
+ a−1Dλ∂ ·A

= DµF
µλ + a−1Dλ∂µAµ.

(3.14)

The linear part of this force is

∂κ g
κµ(∂µAν − ∂νAµ) + a−1∂ν g

κµ∂kAµ
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which, for a > 0 defines a regular hyperbolic operator that is invertible with Feynman

boundary conditions. As above, one may show that the solutions to this equation for

different values of the gauge-parameter a are gauge equivalent to each other, and for

a→ ∞, one regains the formal weight N exp(iSYM)/h̄.

The drift force Dλ∂ ·A is not conservative, so one cannot write down an exact solution

to the time-independent Fokker-Planck equation HFPP = 0. Nor can one express the

solution as a functional integral over a local 4-dimensional action. However we shall, by

successive changes of variable, transform this equation into an equation of Dyson-Schwinger

type that may be used for perturbative expansion and non-perturbative solution.

4. Quantum effective action in stochastic quantization

The partition function Z(J), which is the generating functional of correlation functions

with source J , is defined by

Z(J) ≡

∫

dA exp(JxAx/h̄) P (A). (4.1)

It is the fourier transform (with respect to iJx) of the probability distribution P (A), and

satisfies the fourier-transformed time-independent Fokker-Planck equation,

Jx

[

Jx −Kx(h̄
∂

∂J
)
]

Z(J) = 0. (4.2)

Here Kx(h̄ ∂
∂J ) is the local cubic polynomial in its argument h̄ ∂

∂J that is defined in (3.11).

We set Z(J) = exp[W (J)/h̄], where the “free energy” W (J) is the generating functional

of connected correlation functions, in terms of which the time-independent Fokker-Planck

equation reads

Jx

[

Jx −Kx

(∂W

∂J
+ h̄

∂

∂J

)

1
]

= 0. (4.3)

The quantum effective action

Γ(Acl) = JxAcl,x −W (J) (4.4)

is obtained by Legendre transformation from W (J), by inverting

Acl,x(J) ≡
∂W

∂Jx
=
h̄

Z

∂Z

∂Jx
= 〈Ax〉J , (4.5)
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to obtain Jx = Jx(Acl). In the following we shall write Γ(A) instead of Γ(Acl) when there

is no ambiguity caused by using the same symbol for the quantum Euclidean field A and

the classical source A = Acl. The gluon propagator in the presence of the source J is given

by
Dxy(J) ≡ h̄−1〈 (Ax − 〈Ax〉J ) (Ay − 〈Ay〉J ) 〉J

=
∂Ay

∂Jx
=

∂2W

∂Jx∂Jy
.

(4.6)

We note in passing that the gluon propagator Dxy(J) in the presence of the source J is

a positive matrix, since one has, for any fx,
∑

xy fxDxy(J)fy = h̄−1〈 X2 〉J ≥ 0, where

X ≡
∑

x fx(Ax − 〈Ax〉J), which is positive since it is the expectation-value of a square. It

is expressed in terms of the Legendre-transformed variables A and Γ(A) by

D−1
xy(A) =

∂2Γ(A)

∂Ax∂Ay
. (4.7)

Expectation-values of functionals O = O(A) are expressed in terms of Z(J), W (J) or Γ(A)

by

〈O〉J = Z−1 O
(

h̄
∂

∂J

)

Z

= O
(∂W

∂J
+ h̄

∂

∂J

)

1

〈O〉A = O
(

A+ h̄D(A)
∂

∂A

)

1,

(4.8)

where the subscript indicates that the expectation-value is calculated in the presence of

the source J or A. In the last line, the argument of O is written in matrix notation, and

reads explicitly Ax + h̄Dxy(A) ∂
∂Ay

.

The gluon propagator Dxy(J) is a positive matrix, as is its inverse D−1
xy(A), so both

W (J) and Γ(A) are convex functionals. Physics is regained when the source J is set to 0,

namely Jx = ∂Γ
∂Ax

= 0. Since Γ(A) is a convex functional, the point ∂Γ
∂Ax

= 0 is an absolute

minimum of Γ. In the absence of spontaneous symmetry breaking, this minimum is unique

and defines the quantum vacuum. Thus physics is regained at the absolute minimum

of Γ(A), which justifies the name ‘quantum effective action’.

In terms of the Legendre-transformed variables, the time-independent Fokker-Planck

equation (4.3) reads

∂Γ

∂Ax

[ ∂Γ

∂Ax
+Kx

(

A+ h̄D(A)
∂

∂A

)

1
]

= 0. (4.9)

Here D(A) is expressed in terms of Γ(A) by (4.7), and Kx

(

A + h̄D(A) ∂
∂A

)

1 is evaluated

next.
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5. Quantum effective drift force

We call

Qx(A) ≡ Kx(A+ h̄D(A)
∂

∂A

)

1. (5.1)

the ‘quantum effective drift force’. It is the expectation-value

Qx(Acl) = 〈Kx〉Acl
(5.2)

of the drift force (3.11) in the presence of the source Acl, as one sees from (4.8). To evaluate

it, we expand Kx(A) in terms of its coefficient functions

Kx(A) = K(1)
xy Ay + (2!)−1K(2)

x;yzAyAz + (3!)−1 K(3)
xyzwAyAzAw. (5.3)

The coefficient functions are found from (3.11), and are given in the explicit notation by

K(1)ab

κλ(x, y) = − S
(2)
YM

ab

κλ(x, y)

= δab [ (∂2δκλ − ∂κ∂λ) + a−1∂κ∂λ ]δ(x− y)
(5.4)

K(2)abc

κλµ(x; y, z) = − S
(3)
YM

abc

κλµ(x, y, z) + a−1K
(2)
gt

abc

κλµ
(x; y, z) (5.5)

− S
(3)
YM

abc

κλµ(x, y, z) = gfabc
(

∂[λδ(x− y)δµ]κ δ(y − z) + ∂[µδ(y − z)δκ]λ δ(z − x)

+ ∂[κδ(z − x)δλ]µ δ(x− y)
)

(5.6)

K
(2)
gt

abc

κλµ
(x; y, z) = gfabc ∂[µδ(x− z)δλ]κ δ(x− y) (5.7)

K(3)abcd

κλµν(x, y, z, w) = − S
(4)
YM

abcd

κλµν(x, y, z, w)

= − g2
(

fabef cdeδκ[µδν]λ + facef bdeδκ[λδν]µ

+ fadef cbeδκ[µδλ]ν

)

δ(x− y)δ(x− z)δ(x− w),

(5.8)

where δκ[λδν]µ ≡ δκλδνµ − δκνδλµ etc. The contribution to each coefficient K(n) from

SYM is symmetric in all its arguments, including the first. Thus K(3)abcd

κλµν(x, y, z, w) is

symmetric under permutations of its 4 arguments. Moreover K(1)ab

κλ(x, y) is manifestly

symmetric in its arguments. On the other hand the first argument of K
(2)
gt

abc

κλµ
(x; y, z) is

distinguished.
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The evaluation of the quantum effective drift force, Qx(A) = Kx(A + h̄D ∂
∂A )1, is

straightforward. By substitution into (5.3) we have

Qx(A) = K(1)
xy Ay + (2!)−1K(2)

x;yz

(

Ay + h̄Dyu
∂

∂Au

)

Az

+ (3!)−1 K(3)
xyzw

(

Ay + h̄Dyu
∂

∂Au

)(

Az + h̄Dzv
∂

∂Av

)

Aw

= K(1)
xy Ay + (2!)−1K(2)

x;yz(AyAz + h̄Dyz)

+ (3!)−1 K(3)
xyzw

(

Ay + h̄Dyu
∂

∂Au

)

(AzAw + h̄Dzw).

(5.9)

Use of the identity,

∂Dzw(A)

∂Ar
= −Dzs(A)Dwt(A)

∂3Γ(A)

∂Ar∂As∂At
, (5.10)

that follows from (D−1)z,w(A) = ∂2Γ(A)
∂Az∂Aw

, gives the formula for Qx(A) that is the first

equation of next section.

6. Basic equations for Q and Γ

The first basic equation of the present method is the formula, just derived, for the

quantum effective drift force,

Qx(A) = Kx(A) + h̄ (2!)−1K(2)
x;yzDyz + h̄ (2!)−1 K(3)

xyzwDyzAw

− h̄2 (3!)−1 K(3)
xyzwDyrDzsDwt

∂3Γ(A)

∂Ar∂As∂At
,

(6.1)

where D = D(A) is the gluon propagator in the presence of the source A, and is expressed

in terms of Γ(A) by (D−1)z,w = ∂2Γ(A)
∂Az∂Aw

. This equation is represented graphically in fig. 1.

The terms of order h̄ and h̄2 correspond to one and two loops in the figure, and we write

Qx = Kx + h̄Q1loop,x(Γ) + h̄2Q2loop,x(Γ). (6.2)

The second basic equation of the present approach is obtained by writing the time-

independent Fokker-Planck equation (4.9), satisfied by the quantum effective action, Γ,

in terms of the quantum effective drift force, Qx(A),

∂Γ

∂Ax

[ ∂Γ

∂Ax
+ Qx(A)

]

= 0. (6.3)
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This equation is of classic Hamilton-Jacobi type, with energy E = 0, and hamiltonian

H(p, A) = px[px + Qx(A)].

The pair of equations (6.1) and (6.3) forms the basis of the present approach and

allows a systematic calculation of the correlation functions. Equation (6.1) resembles the

DS equation for the gluon field in Faddeev-Popov theory namely ∂Γ
∂Ax

= ∂S
∂Ax

(A+ h̄D ∂
∂A )1,

where S = SYM + Sgf + Sgh, and Sgh is the ghost action. Indeed the same expressions

appear in both equations, as is seen most easily from fig. 1, except that the contribution

from the ghost action,
δSgh

δAµ
(A + h̄D δ

δA
)1, is replaced by the term proportional to a−1 in

the gluon vertex K(2).

In the functional equations (6.1) and (6.3), satisfied by Qx(A) and Γ(A), A is a dummy

variable, and each of these functional equations represents a set of equations satisfied by

the coefficient functions that appear in the expansions in powers of A,

Qx(A) = Q(1)
x;yAy + (2!)−1 Q(2)

x;y1,y2
Ay1

Ay2
+ ... (6.4)

Γ(A) = (2!)−1Γ(2)
y1,y2

Ay1
Ay2

+ (3!)−1Γ(3)
y1,y2,y3

Ay1
Ay2

Ay3
+ ... , (6.5)

where Γ(n) is the proper n-vertex. The individual equations for the coefficient functions

are conveniently obtained by differentiating (6.1) and (6.3) n times with respect to Az,

and then setting A = 0.

We now come to an important point. The time-independent Fokker-Planck equation

(4.9) satisfied by Γ(A) is equivalent to the pair of coupled equations (6.1) and (6.3) that

is satisfied by the pair Γ(A) and Qx(A). Indeed every solution of (6.1) and (6.3) yields

a solution of (4.9) and conversely. This remark is the key to transforming the time-

independent Fokker-Planck equation into an equation of DS type. For it turns out that

the Hamilton-Jacobi equation (6.3) may be solved exactly and explicitly for the coefficient

functions Γ(n) of Γ(A) in terms of the coefficient functions Q
(m)
x of Qx(A), where m < n. In

fact we shall obtain a simple algebraic – indeed, rational – formula for Γ(n) = Γ(n)(Q) for

every n. This allows us to change variable from the quantum effective action, Γ = Γ(Q),

to the quantum effective drift force, Qx. It will be the last in our series of changes of

variable, P (A) → Z(J) →W (J) → Γ(A) → Qx(A).

Neither the Hamilton-Jacobi equation (6.3) nor its solution Γ = Γ(Q) contains h̄.

When the solution of (6.3), Γ = Γ(Q), is substituted into (6.2), one obtains an equation of

the form

Qx = Kx + h̄Q1loop,x(Q) + h̄2Q2loop,x(Q). (6.6)
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This is an equation of DS type for the quantum effective drift force Qx. By iteration,

it provides the h̄-expansion of Qx. The zeroth-order term Kx, given in (3.11), is a local

function of A. We shall find an approximate, non-perturbative solution of this equation.

But first we must find Γ(Q).

7. Solution for quantum effective action Γ(Q)

In this section we solve (6.3) for the coefficient functions Γ(2) = Γ(2)(Q) and Γ(3) =

Γ(3)(Q). The solution for Γ(4) and Γ(n) for arbitrary n is found in Appendix D.

The solution for Γ(2), reads simply

Γ(2)
x1x2

= − Q(1)
x1;x2

. (7.1)

Note: By definition, Γ
(n)
x1x2...xn is symmetric in its n arguments, whereas Q

(n−1)
x1;x2,...xn has

a distinguished first argument and is symmetric only in the remaining n − 1 arguments,

so in general the equation Γ
(n)
x1x2...xn = − Q

(n−1)
x1;x2,...xn would not be consistent. However

symmetries in fact constrain Q
(1)
x1;x2 to be symmetric, Q

(1)
x1;x2 = Q

(1)
x2;x1 , as we will see, so

(7.1) is in fact consistent.

To prove (7.1), we differentiate (6.3) with respect to Ax1
and Ax2

, and obtain, after

setting A = 0,

Γ(2)
x1x (Γ(2)

xx2
+Q(1)

x;x2
) + (x1 ↔ x2) = 0. (7.2)

To solve this equation for Γ(2), we diagonalize all the matrices by taking fourier transforms.

In the extended notation this equation reads,

∫

d4x
(

Γ(2)a1a

µ1µ(x1, x)[Γ
(2)aa2

µµ2
(x, x2) +Q(1)aa2

µµ2
(x; x2)]

+ [(x1, µ1, a1) ↔ (x2, µ2, a2)]
)

= 0,

(7.3)

and we take fourier transforms,

Q(1)ab

λµ(x; y) = δab (2π)−4

∫

d4k exp[ik · (x− y)] Q̃
(1)
λµ(k)

Γ(2)ab

λµ(x, y) = δab (2π)−4

∫

d4k exp[ik · (x− y)] Γ̃
(2)
λµ(k).

(7.4)
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Color, translation, and Lorentz invariance, and use of the transverse and longitudinal

projectors, PT
λµ(k) = (δλµ − kλkµ/k

2) and PL
λµ(k) = kλkµ/k

2 give the decomposition of

these quantities into their transverse and longitudinal invariant functions,

Q̃
(1)
λµ(k) = Q(1)T(k2) PT

λµ(k) +Q(1)L(k2) PL
λµ(k)

Γ̃
(2)
λµ(k) = T (k2) PT

λµ(k) + a−1L(k2) PL
λµ(k).

(7.5)

The coefficient a−1 is introduced here for later convenience. In terms of the fourier trans-

forms, (7.3) reads

Γ̃(2)
µ1µ(k) [Γ̃(2)

µµ2
(k) + Q̃(1)

µµ2
(k)] + (k, µ1, µ2 ↔ − k, µ2, µ1) = 0. (7.6)

Color and Lorentz symmetries, as expressed in (7.5), constrain Q̃
(1)
λν (k) to be a symmetric

tensor that is even in k, Q̃
(1)
λν (k) = Q̃

(1)
νλ (k) = Q̃

(1)
λν (−k), as is Γ̃

(2)
λν (k). Products of such

tensors have the same property, and as a result, the two terms in (7.6) are equal, and we

have

Γ̃(2)
µ1µ(k) [Γ̃(2)

µµ2
(k) + Q̃(1)

µµ2
(k)] = 0, (7.7)

which proves the assertion (7.1). For future reference, we note

(D̃−1)λµ(k) = Γ̃
(2)
λµ(k) = − Q̃

(1)
λµ(k)

= T (k2) PT
λµ(k) + a−1L(k2) PL

λµ(k).
(7.8)

Here we have introduced the usual gluon propagator, with sources set to 0, Dxy =

Dxy(A)|A=0. It is given in terms of Γ by (D−1)xy = ∂2Γ
∂Ax∂Ay

|A=0 = Γ
(2)
xy .

We next find Γ(3). For this purpose we differentiate (6.3) with respect to Ax1
, Ax2

and Ax3
, and obtain, after setting A = 0,

Γ(2)
x1x (Γ(3)

xx2x3
+Q(2)

x;x2x3
) + (cyclic) = 0, (7.9)

where we have used Γ(2) = − Q(1), and (cyclic) represents the cyclic permutations

of (1,2,3). A novelty of the stochastic method is now apparent. For Q
(2)
x;x2,x3 , unlike

Q
(1)
x;x2 , is not completely symmetric in all its arguments as it would be if the drift force

were conservative. As a result, the equation Γ
(3)
x,x2,x3 +Q

(2)
x;x2,x3 = 0 has no solution. This

is already apparent to zero order in h̄, where Q
(2)
x;x2,x3 = K

(2)
x;x2,x3 , but K

(2)
x;x2,x3 is not

symmetric in its 3 arguments, as noted above.
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To solve (7.9) for Γ
(3)
xx2x3 , we again diagonalize the matrix Γ

(2)
x1x by Fourier transfor-

mation. To do so, we write the last equation in the extended notation,

∫

d4x
(

Γ(2)a1a

µ1µ(x1, x) [Γ(3)aa2a3

µµ2µ3
(x, x2, x3) +Q(2)aa2a3

µµ2µ3
(x; x2, x3)] + (cyclic)

)

= 0,

(7.10)

and take fourier transforms,

Q(2)a1a2a3

µ1µ2µ3
(x1; x2, x3) = (2π)−8

∫

d4k1d
4k3d

4k3 exp(ik1 · x1 + ik2 · x2 + ik3 · x3)

× δ(k1 + k2 + k3) Q̃
(2)a1a2a3

µ1µ2µ3
(k1; k2, k3)

(7.11)

Γ(3)a1a2a3

µ1µ2µ3
(x1, x2, x3) = (2π)−8

∫

d4k1d
4k3d

4k3 exp(ik1 · x1 + ik2 · x2 + ik3 · x3)

× δ(k1 + k2 + k3) Γ̃(3)a1a2a3
µ1µ2µ3

(k1, k2, k3),

(7.12)

where Q̃(2)a1a2a3
µ1µ2µ3

(k1; k2, k3) and Γ̃(3)a1a2a3
µ1µ2µ3

(k1, k2, k3) are defined only for k1 +k2 +k3 = 0.

This gives

Γ̃(2)
µ1µ(k1) [Γ̃(3)a1a2a3

µµ2µ3
(k1, k2, k3) + Q̃(2)a1a2a3

µµ2µ3
(k1; k2, k3)] + (cyclic) = 0. (7.13)

We use the symmetry of Γ̃(3)a1a2a3
µ1µ2µ3

(k1, k2, k3) in its three arguments to write this as

[Γ̃(2)
µ1ν1

(k1)δµ2ν2
δµ3ν3

+ (cyclic)] Γ̃(3)a1a2a3
ν1ν2ν3

(k1, k2, k3) = − H(3)a1a2a3
µ1µ2µ3

(k1, k2, k3), (7.14)

where

H(3)a1a2a3
µ1µ2µ3

(k1, k2, k3) ≡ Γ̃(2)
µ1µ(k1) Q̃

(2)a1a2a3
µµ2µ3

(k1; k2, k3) + (cyclic). (7.15)

To complete the diagonalization of Γ̃
(2)
λµ(k), and solve (7.14) for Γ̃(3)a1a2a3

µ1µ2µ3
(k1, k2, k3),

we apply a transverse or longitudinal projector to each of its three arguments, and use

the transverse and longitudinal decomposition of Γ̃
(2)
λµ(k) given in (7.8). One obtains

Γ̃(3)a1a2a3
µ1µ2µ3

(k1, k2, k3) in terms of its transverse and longitudinal projections, defined by

XT
µ (k) ≡ PT

µν(k)Xν(k) and XL
µ (k) ≡ PL

µν(k)Xν(k),

Γ̃(3)TTTa1a2a3
µ1µ2µ3

(k1, k2, k3) = − [T (k2
1) + T (k2

2) + T (k2
3)]

−1 H(3)TTTa1a2a3
µ1µ2µ3

(k1, k2, k3)

(7.16)

Γ̃(3)LTTa1a2a3
µ1µ2µ3

(k1, k2, k3) = − [a−1L(k2
1) + T (k2

2) + T (k2
3)]

−1 H(3)LTTa1a2a3
µ1µ2µ3

(k1, k2, k3)

(7.17)

etc. The corresponding formulas for Γ̃(4) and Γ̃(n) are found in Appendix D.
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8. Dyson-Schwinger equation for the gluon propagator

We have solved the second basic equation (6.3) for the coefficient functions Γ̃(n),

and expressed them in terms of the Q̃(m), for m < n. We now turn to the first basic

equation (6.1), and derive the equations for the coefficient functions Q(m) by the same

method of taking derivatives and setting A = 0. To derive the equation for Q(1), we

differentiate (6.1) with respect to Ay, and obtain, after setting A = 0,

Q(1)
x;y = K(1)

x;y − h̄ (2!)−1 K(2)
x;x1,x2

Dx1y1
Dx2y2

Γ(3)
y1y2y + h̄ (2!)−1 K(3)

xx1x2y Dx1x2

− h̄2 (3!)−1K(3)
xx1x2x3

Dx1y1
Dx2y2

Dx3y3
Γ(4)

y1y2y3y

+ h̄2 (2!)−1 K(3)
xx1x2x3

Dx1z1
Dx2z2

Γ(3)
z1z2z3

Dz3y1
Dx3y2

Γ(3)
y1,y2,y,

(8.1)

where we have again used (5.10). This equation is represented diagrammatically in fig. 2.

In momentum space the coefficients (5.4) – (5.8) of the drift force read

K(1)ab

λµ(x; y) = δab (2π)−4

∫

d4k exp[ik · (x− y)] K̃
(1)
λµ (k), (8.2)

K(2)a1a2a3

µ1µ2µ3
(x1; x2, x3) = fa1a2a3 (2π)−8

∫

d4k1d
4k3d

4k3 exp(ik1 · x1 + ik2 · x2 + ik3 · x3)

× δ(k1 + k2 + k3) K̃
(2)

µ1µ2µ3
(k1; k2, k3)

(8.3)

K(3)a1a2a3a4

µ1µ2µ3µ4
(x1, x2, x3, x4) = (2π)−12

∫

d4k1d
4k3d

4k3d
4k4 exp(i

4
∑

i=1

ki · xi)

× δ(k1 + k2 + k3 + k4) K̃
(3)a1a2a3a4

µ1µ2µ3µ4
,

(8.4)

where

− K̃
(1)
λµ (k) = [ (k2δλµ − kλkµ) + a−1kλkµ ] (8.5)

K̃(2)
µ1µ2µ3

(k1; k2, k3) = − S̃
(3)
YMµ1µ2µ3

(k1, k2, k3) + a−1K̃
(2)
gt µ1µ2µ3

(k1; k2, k3),

− S̃
(3)
YMµ1µ2µ3

(k1, k2, k3) ≡ ig [ (k1)[µ2
δµ3]µ1

+ (cyclic) ]

K̃
(2)
gt µ1µ2µ3

(k1; k2, k3) ≡ i g [ (k3)µ3
δµ1µ2

− (2 ↔ 3) ].

(8.6)

− K̃(3)a1a2a3a4
µ1µ2µ3µ4

= g2 ( fa1a2efa3a4e δµ1[µ3
δµ4]µ2

+ fa1a3efa2a4e δµ1[µ2
δµ4]µ3

+ fa1a4efa3a2e δµ1[µ3
δµ2]µ4

).
(8.7)
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With Q̃(1) = −D̃−1, we obtain finally the DS equation for the gluon propagator

− δab (D̃−1)λµ(k) = − δab [(k2δκλ − kκkλ) + a−1kκkλ]

− h̄ faa1a2 (2!)−1(2π)−4

∫

dk1 K̃
(2)
λλ1λ2

(k;−k1, k1 − k)

× D̃λ1µ1
(k1) D̃λ2µ2

(k − k1) Γ̃(3)a1a2b
µ1µ2µ(k1, k − k1,−k)

+ h̄ (2!)−1(2π)−4

∫

dk1 K̃
(3)a c c b

λλ1λ2µ D̃λ1λ2
(k1)

+ δab Q̃
(1)
2l,λµ(k),

(8.8)

where the two-loop term is given by

δab Q̃
(1)
2l,λµ(k) ≡ − h̄2 (3!)−1(2π)−8

∫

dk1dk2 K̃
(3)aa1a2a3

λλ1λ2λ3
D̃λ1µ1

(k1) D̃λ2µ2
(k2)

× D̃λ3µ3
(k − k1 − k2) Γ̃(4)a1a2a3b

µ1µ2µ3µ(k1, k2, k − k1 − k2,−k)

+ h̄2 (2!)−1(2π)−8

∫

dk1dk2 K̃(3)aa1a2a3

λλ1λ2λ3
D̃λ1ν1

(k1)

× D̃λ2ν2
(k2) Γ̃(3)a1a2b1

ν1ν2ν3
(k1, k2,−k1 − k2) D̃ν3µ1

(k1 + k2)

× D̃λ3µ2
(k − k1 − k2) Γ̃(3)b1a3b

µ1µ2µ(k1 + k2, k − k1 − k2,−k).

(8.9)

9. Truncation scheme

To obtain a non-perturbative solution of the DS equations, it is necessary to truncate

them in some way. Needless to say, truncation remains an uncontrolled approximation

until it is tested by varying the scheme, or by comparison with numerical simulation, as

discussed in the Introduction and Conclusion. Moreover the truncation scheme is gauge

dependent. This situation is familiar in atomic physics where bound state calculations

are done in the Coulomb gauge. We shall ultimately solve the truncated system in the

Landau-gauge limit.

As a first step we neglect the two-loop contribution in eq. (8.8). We shall also not

retain the tadpole term, which in any case gets absorbed in the renormalization. The

3-vertex that we will obtain

Γ̃(3)a1a2a3
µ1µ2µ3

(k1, k2, k3) = fa1a2a3 Γ̃(3)
µ1µ2µ3

(k1, k2, k3), (9.1)
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defined for k1 + k2 + k3 = 0, has the color dependence that allows us to use the identity

faa1a2fa1a2b = Nδab for SU(N) color group. As a result, the DS equation (8.8) simplifies

to

(D̃−1)λµ(k) = (k2δκλ − kκkλ) + a−1kκkλ

+ h̄N (2!)−1(2π)−4

∫

dk1 K̃
(2)
λλ1λ2

(k;−k1, k1 − k),

× D̃λ1µ1
(k1) D̃λ2µ2

(k − k1) Γ̃(3)
µ1µ2µ(k1, k − k1,−k).

(9.2)

We convert this into a DS equation for the invariant propagator functions T (k2) and

L(k2). The gluon propagator is given by

D̃λµ(k) =
PT

λµ(k)

T (k2)
+ a

PL
λµ(k)

L(k2)
. (9.3)

To get the DS equation for T (k2), we apply projectors PT
κ,ν(k) to both free indices of (9.2),

and obtain [PT (k)D̃−1(k)PT (k)]λµ = T (k2)PT
λµ(k) on the left hand side. We take the

trace on Lorentz indices in d space-time dimensions, and use PT
λλ(k2) = d − 1, to obtain

the DS equation for T (k2),

T (k2) = k2 +
h̄N

2(d− 1)(2π)d

∫

ddk1 [IT,TT (k1, k) + 2IT,TL(k1, k) + IT,LL(k1, k)], (9.4)

where

IT,TT (k1, k) =
K̃(2)TT T

λλ1λ2
(k,−k1,−k2) Γ̃(3)T T T

λ1λ2λ (k1, k2,−k)

T (k2
1) T (k2

2)
(9.5)

IT,TL(k1, k) = a
K̃(2)TT L

λλ1λ2
(k;−k1,−k2) Γ̃(3)T L T

λ1λ2λ (k1, k2,−k)

T (k2
1) L(k2

2)
(9.6)

IT,LL(k1, k) = a2
K̃(2)TL L

λλ1λ2
(k;−k1,−k2) Γ̃(3)L L T

λ1λ2λ(k1, k2,−k)

L(k2
1) L(k2

2)
, (9.7)

k2 = k − k1, and the transverse and longitudinal projections are defined in sec. 7.

Similarly, to get the DS equation for L(k2), we apply projectors PL
κ,ν(k) to both free

indices of (9.2), and obtain [PL(k)D̃−1(k)PL(k)]λµ = a−1L(k2)PL
λµ(k) on the left hand

side. We take the trace on Lorentz indices in d space-time dimensions, and use PL
λλ(k2) = 1,

to obtain the DS equation for L(k2),

a−1L(k2) = a−1k2 +
h̄N

2(2π)d

∫

ddk1 [IL,TT (k1, k) + 2IL,TL(k1, k) + IL,LL(k1, k)], (9.8)
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where

IL,TT (k1, k) =
K̃(2)LT T

λλ1λ2
(k,−k1,−k2) Γ̃(3)T T L

λ1λ2λ (k1, k2,−k)

T (k2
1) T (k2

2)
(9.9)

IL,TL(k1, k) = a
K̃(2)LT L

λλ1λ2
(k;−k1,−k2) Γ̃(3)T L L

λ1λ2λ(k1, k2,−k)

T (k2
1) L(k2

2)
(9.10)

IL,LL(k1, k) = a2
K̃(2)LL L

λλ1λ2
(k;−k1,−k2) Γ̃(3)L L L

λ1λ2λ(k1, k2,−k)

L(k2
1) L(k2

2)
. (9.11)

The vertex K̃(2) is given in (8.6). To complete the truncation scheme and obtain

closed equations for T (k2) and L(k2), we need an approximation for the vertex Γ̃(3). We

will approximate Γ̃(3) by its value to zero-order in h̄. This vertex is expressed linearly in

terms of Q̃(2) by the exact formulas of sec. 7, which may be written Γ̃(3) = MQ̃(2), where

M = M(D̃). At tree level, Q̃(2) is given by

Q̃(2) = K̃(2)

= − S̃
(3)
YM + a−1K̃

(2)
gt

(9.12)

where we have used (6.2) and (8.6). Each of these terms contributes additively to Γ̃(3) =

MQ̃(2). Moreover S̃
(3)
YM, is symmetric in all its arguments. As a result, it contributes

unchanged to Γ̃(3), as one sees from (7.9), and we have

Γ̃(3)
µ1µ2µ3

(k1, k2, k3) = S̃
(3)
YMµ1µ2µ3

(k1, k2, k3) + Γ̃
(3)
gt µ1µ2µ3

(k1, k2, k3), (9.13)

where Γ̃
(3)
gt = MK̃

(2)
gt is obtained from (7.15) – (7.17) by the substitutions

Q̃(2)
µ1µ2µ3

(k1; k2, k3) → a−1K̃
(2)
gt µ1µ2µ3

(k1; k2, k3)

Γ̃(3)
µ1µ2µ3

(k1, k2, k3) → Γ̃
(3)
gt µ1µ2µ3

(k1, k2, k3).
(9.14)

Finally, to obtain Γ̃
(3)
gt to zero-order in h̄, we substitute the tree-level propagators

T (k2) → k2, L(k2) → k2, (9.15)

into the formulas of sec. 7. This is done in Appendix E, and gives for the vertex Γ̃
(3)
gt ,

Γ̃
(3)
gt

T T T
µ1µ2µ3

(k1, k2, k3) = 0

Γ̃
(3)
gt

T T L
µ1µ2µ3

(k1, k2, k3) = − ig
k2
1 − k2

2

ak2
1 + ak2

2 + k2
3

(k3)µ3
[PT(k1)P

T(k2)]µ1µ2

Γ̃
(3)
gt

T L L
µ1µ2µ3

(k1, k2, k3) = − ia−1g
( k2

3 − ak2
1

ak2
1 + k2

2 + k2
3

(k2)µ2
[PT(k1)P

L(k3)]µ1µ3
− (2 ↔ 3)

)

Γ̃
(3)
gt

L L L
µ1µ2µ3

(k1, k2, k3) = − ia−1g
( k2

2 − k2
3

k2
1 + k2

2 + k2
3

(k1)µ1
[PL(k2)P

L(k3)]µ2µ3
+ (cyclic)

)

,

(9.16)
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valid to zero-order in h̄. Because of the denominators, the vertex Γ̃
(3)
gt is non-local even to

this order. Equations (9.13) and (9.16) complete the specification of Γ̃(3) that appears in

the truncated DS equations (9.4) and (9.8) for the 2 invariant propagator functions T (k2)

and L(k2).

In Faddeev-Popov theory there are, by contrast, 3 invariant propagator functions,

namely, these 2 plus the ghost propagator. However in Faddeev-Popov theory, the Slavnov-

Taylor identity in its BRST version implies that the gluon self-energy is transverse, so there

are finally only 2 independent invariant propagator functions in Faddeev-Popov theory also,

namely, the transverse part of the inverse gluon propagator and the ghost propagator.9

In the present theory, the longitudinal part of the gluon propagator replaces the ghost

propagator as the second invariant propagator function. There is no BRST symmetry in

the present theory, but it possesses a Ward identity, derived in Appendix C, that expresses

the effect of a gauge transformation and constrains the form of divergences.

10. Landau gauge limit

We now specialize to the Landau gauge limit a→ 0. We cannot directly set a = 0 in

the DS equations (9.4) and (9.8) because both vertices contain terms of order a−1. With

the gluon propagator given by (9.3), we take as an Ansatz that the invariant propagator

functions T (k2) and L(k2) remain finite in the limit a→ 0. This accords with the behavior

obtained in [6] by a Born-Oppenheimer type calculation. At a = 0, the propagator is indeed

transverse, which is the defining condition for the Landau gauge, and L(k2) does drop out

of the propagator. However the vertices contain terms of order a−1, and, remarkably,

the longitudinal propagator function L(k2) does not decouple at a = 0, but remains an

essential component of the dynamics!

We next determine the a-dependence of the vertices asymptotically, at small a. By

(8.6), we have K(2) = −S
(3)
YM + a−1K

(2)
gt , so this vertex contains a term of order a0 and

a term of order a−1. We take the asymptotic limit of (9.16) at small a, and obtain the

interesting a-dependence

Γ̃
(3)
gt

T T T
µ1µ2µ3

(k1, k2, k3) = 0

Γ̃
(3)
gt

T T L
µ1µ2µ3

(k1, k2, k3) = γ̃T T L
µ1µ2µ3

(k1, k2, k3)

Γ̃
(3)
gt

T L L
µ1µ2µ3

(k1, k2, k3) = a−1 γ̃T L L
µ1µ2µ3

(k1, k2, k3)

Γ̃
(3)
gt

L L L
µ1µ2µ3

(k1, k2, k3) = a−1 γ̃L L L
µ1µ2µ3

(k1, k2, k3),

(10.1)

9 In practice the truncated DS equations in Faddeev-Popov theory violate the Slavnov-Taylor

identities to some extent.
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where

γ̃T T L
µ1µ2µ3

(k1, k2, k3) = − ig
k2
1 − k2

2

k2
3

(k3)µ3
[PT(k1)P

T(k2)]µ1µ2

γ̃T L L
µ1µ2µ3

(k1, k2, k3) = − ig
k2
3

k2
2 + k2

3

(k2)µ2
[PT(k1)P

L(k3)]µ1µ3
− (2 ↔ 3)

γ̃L L L
µ1µ2µ3

(k1, k2, k3) = − ig
k2
2 − k2

3

k2
1 + k2

2 + k2
3

(k1)µ1
[PL(k2)P

L(k3)]µ2µ3
+ (cyclic)

(10.2)

are independent of a. These quantities are anti-symmetric in their three arguments so, for

example, γ̃T T L
µ1µ2µ3

(k1, k2, k3) = −γ̃T L T
µ1µ3µ2

(k1, k3, k2), etc. We see that Γ̃(3) also contains a

term of order a0 and a term of order a−1.

The DS equation for L(k2), eq. (9.8), is consistent with our Ansatz in the Landau

gauge limit only if the leading term on the right is also of order a−1. This is non-trivial,

because both vertices contain terms of order a−1, so in principle terms of order a−2 could

appear on the right hand side which would invalidate our Ansatz.

We now derive the DS equation for L(k2) in the Landau-gauge limit by evaluating in

succession the terms (i) IL,TT, (ii) IL,LL, and (iii) IL,TL that appear on the right hand

side of (9.8), in the limit a→ 0.

(i) Consider eq. (9.9) for IL,TT. It contains no explicit powers of a. Moreover the

vertex Γ̃(3)T T L
µ1µ2µ(k1, k2,−k), given in (10.1), is of order a0. Thus the inconsistency of a

term of order a−2 is avoided, and this intermediate state will give a contribution of required

order a−1 only if the vertex, K̃(3)LT T
λλ1λ2

(k;−k1,−k2), gives a contribution of order a−1. The

term a−1K̃
(3)
gt λλ1λ2

(k;−k1,−k2) in (8.6) is in fact of this order. The projected components

of K̃
(2)
gt are easily read off (8.6) by writing δλµ = [PT (k) + PL(k)]λµ, which gives

K̃
(2)
gt µ1µ2µ3

(k1; k2, k3) = ig (k3)µ3

(

[ PT (k1) + PL(k1) ][ PT (k2) + PL(k2) ]
)

µ1,µ2

− (2 ↔ 3).

(10.3)

The polarization vector (k3)µ3
is purely longitudinal, as is (k2)µ2

, and this implies

K̃
(2)
gt

L T T
λλ1λ2

(k;−k1,−k2) = K̃
(2)
gt

T T T
λλ1λ2

(k;−k1,−k2) = 0. (10.4)

Thus there is no contribution of the required order a−1 from IL,TT.

(ii) Consider eq. (9.11) for IL,LL. It has the coefficient a2, so there is no contribution

of the required order a−1 from IL,LL either.
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(iii) Now consider eq. (9.10) for IL,TL. It has the coefficient a. So when each vertex

is of order a−1 there is an overall contribution to a−1L(k2) of the required order a−1. As

a result, the DS equation (9.8) for L(k2) simplifies in Landau gauge to

L(k2) = k2 + h̄N (2π)−4

∫

d4k1

K̃
(2)
gt

L T L
λλ1λ2

(k;−k1,−k2) γ̃
T L L
λ1λ2λ (k1, k2,−k)

T (k2
1) L(k2

2)
. (10.5)

By (10.3) and (10.2), we have

K̃
(2)
gt

L T L
λλ1λ2

(k;−k1,−k2) γ̃
T L L
λ1λ2λ (k1, k2,−k) = −

g2 k2
2

k2
2 + k2

[k · PT (k1) · k + k · PT (k1) · k2]

= − 2
g2 k2

2

k2
2 + k2

k · PT (k1) · k,

(10.6)

where we have used k2 = k − k1. Note that a factor of the external momentum k appears

at each vertex. This corresponds to the factorization of external ghost momentum in the

Landau gauge in Faddeev-Popov theory. This gives the truncated DS equation for L(k2)

in Landau gauge,

L(k2) = k2 −
2h̄g2N

(2π)4

∫

d4k1
k2
2 [k2k2

1 − (k · k1)
2]

k2
1 (k2

2 + k2) T (k2
1) L(k2

2)
. (10.7)

The DS equation for T (k2), eq. (9.4), is consistent with our Ansatz in the Landau

gauge limit only if the leading term on the right is also of order a0. This is non-trivial,

because both vertices contain terms of order a−1, so in principle terms of order a−1 and

a−2 could appear on the right hand side which would invalidate our Ansatz.

We now derive the DS equation for T (k2) in the Landau-gauge limit by evaluating in

succession the terms (i) IT,TT, (ii) IT,TL, and (iii) IT,LL that appear on the right hand

side of (9.4), in the limit a→ 0.

(i) Consider eq. (9.5) for IT,TT. It contains no explicit powers of a. By (10.1) and

(10.4), the vertices from K̃
(2)
gt

TT T
λλ1λ2

(k;−k1,−k2) and Γ̃
(3)
gt

T T T
µ1µ2µ (k1, k2,−k) vanish, and we

obtain from (8.6) and (9.13),

K̃(2)T T T
λλ1λ2

(k;−k1,−k2) = − S̃
(3)
YM

TT T
λλ1λ2

(k,−k1,−k2) (10.8)

and

Γ̃(3)T T T
µ1µ2µ (k1, k2,−k) = S̃

(3)
YM

T T T
µ1µ2µ (k1, k2,−k). (10.9)

This gives a contribution of the required order.
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(ii) Next consider eq. (9.6) for IT,TL. It has coefficient a. By (9.13) and (10.1), we

have

Γ̃(3)T L T
µ1µ2µ(k1, k2,−k) = S̃(3)T L T

µ1µ2µ(k1, k2,−k) + γ̃(3)T L T
µ1µ2µ(k1, k2,−k), (10.10)

which is of order a0. Thus only that part of the vertex K̃(2)TT L
λλ1λ2

(k;−k1,−k2) that

is of order a−1 will contribute to the desired order a0. However from (10.2) for

γ̃(3)T T L
µ1µ2µ3

(k1, k2, k3), and by evaluation of S̃(3)T L T
µ1µ2µ(k1, k2,−k), one obtains

Γ̃(3)T L T
µ1µ2µ(k1, k2,−k) = 0. (10.11)

(iii) Finally consider eq. (9.7) for IT,LL. It has coefficient a2. To get a net contribution

of order a0, we make the substitutions of the relevant projected vertices,

K̃(2)TL L
λλ1λ2

(k;−k1,−k2) → a−1K̃
(2)
gt

TL L
λλ1λ2

(k;−k1,−k2)

Γ̃(3)L L T
µ1µ2µ(k1, k2,−k) → a−1γ̃(3)L L T

µ1µ2µ(k1, k2,−k),
(10.12)

by (8.6), (9.13), and (10.1). Again the conclusion is consistent with our Ansatz.

We have now found all the terms on the right hand side of (9.4) that contribute to

T (k2) in the Landau gauge limit, namely,

IT,TT (k1, k) =
− S̃

(3)
YM

TT T
λλ1λ2

(k,−k1,−k2) S̃
(3)
YM

T T T
λ1λ2λ (k1, k2,−k)

T (k2
1) T (k2

2)
(10.13)

IT,TL(k1, k) = 0 (10.14)

IT,LL(k1, k) =
K̃

(2)
gt

TL L
λλ1λ2

(k;−k1,−k2) γ̃
(3)L L T

λ1λ2λ(k1, k2,−k)

L(k2
1) L(k2

2)
. (10.15)

and k2 = k − k1. The last term is given explicitly by

IT,LL(k1, k) = − g2 (k2
1 + k2

2) k1 · P
T (k) · k2 − k2

2 k1 · P
T (k) · k1 − k2

1 k2 · P
T (k) · k2

(k2
1 + k2

2) L(k2
1) L(k2

2)
(10.16)

IT,LL(k1, k) = 2 g2 k2
1 k

2 − (k1 · k)
2

k2 L(k2
1) L(k2

2)
, (10.17)

where we have used k1 · PT (k) · k1 = k2 · PT (k) · k2 = −k1 · PT (k) · k2. The non-local

denominator (k2
1 + k2

2)
−1 has cancelled out of this expression.

We have obtained a consistent Landau gauge limit of the truncated DS equations for

the invariant propagator functions T (k2) and L(k2). As asserted, the invariant longitudinal

propagator function L(k2) does not decouple in this limit. The reader will have noticed

a striking similarity to the corresponding equations in Faddeev-Popov theory, with the

longitudinal propagator replacing the ghost propagator.
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11. Infrared critical exponents

We shall solve the the DS equations (9.4) and (10.7) for the asymptotic forms of T (k2)

and L(k2) in Landau gauge at low momentum. We suppose that at asymptotically small

k, they obey simple power laws,

T (k2) ∼ CT (k2)1+αT

L(k2) ∼ CL (k2)1+αL ,
(11.1)

where αT and αL are infrared critical exponents whose value we wish to determine. Canon-

ical dimension corresponds to αT = αL = 0. As explained in sec. 3, we know that in the

Landau gauge limit, a → 0, the gauge field A is constrained to be transverse ∂ · A = 0,

and to lie inside the Gribov horizon, that is to say, where the Faddeev-Popov operator is

positive, −∂ ·D(A) > 0. The transversality condition is satisfied by our Ansatz. As has

been shown many times [22], [26], the positivity condition strongly suppresses the low-

momentum components of Ã(k). Recalling that the transverse part of the gluon propgator

is given by DT (k2) = 〈|Ã(k)|2〉, we look for a solution for which DT (k2) = 1/T (k2) is

suppressed at low k, so T (k2) is enhanced at small k compared to the canonical power

T (k2) = k2. This means αT < 0.

We now estimate the power of k of the various terms in the DS equation (9.4) for T (k2).

The analysis is similar to the Faddeev-Popov case [2], [3], [4], [5], [6]. The left hand side

has the power (k2)1+αT . The tree-level term is k2, so with αT < 0, the tree level term is

subdominant in the infrared and may be neglected. To evaluate the loop integral
∫

d4k1,

asymptotically at low external momentum k we take k to be small compared to a QCD mass

scale, |k| << ΛQCD, and we rescale the variable of integration according to kµ
1 = |k|xµ.

We now have a dimensionless integral in which the QCD mass scale appears only in the

very small ratio |k|/ΛQCD. In the asymptotic infrared limit, this ratio goes to 0, and

everywhere in the integrand we use the asymptotic forms (11.1). This is equivalent to

using the asymptotic forms (11.1) everywhere in the original integral. We shall see that

the resulting integral is convergent, which means that the integral is effectively cut off at

momentum k1 ∼ k.

We now estimate the contributions of the terms IT,TT and IT,LL, eqs. (10.13) and

(10.15), to the right hand side of the DS equation (9.4), by simply counting powers of k

and k1. One finds that, after integration
∫

d4k1, these terms are of order (k2)1−2αT and

(k2)1−2αL respectively, while the left-hand side is of order (k2)1+αT , with αT < 0. The
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powers match on both sides only if αL > 0. In this case, IT,LL is the dominant term on

the right, and by equating powers of k, one obtains

αT = − 2αL, (11.2)

and αL > 0. We retain only the dominant term IT,LL on the right in (9.4), which simplifies,

for arbitrary space-time dimension d, to

CT (k2)1+αT =
h̄g2N

(d− 1) C2
L (2π)d k2

∫

ddk1
k2
1 k

2 − (k1 · k)
2

(k2
1)

1+αL (k2
2)

1+αL
, (11.3)

where k2 = k−k1, and we have used (10.17). This agrees with eq. (6.14) of [6] in Faddeev-

Popov theory. We write it as
CTC

2
L

h̄g2N
= IT , (11.4)

where IT is evaluated in Appendix F. We have generalized to arbitrary space-time dimenion

d, and we take d in the range 2 < d ≤ 4. By equating powers of k for arbitrary d, we find

that the critical exponents are related by

αT + 2αL = − (4 − d)/2. (11.5)

The last integral is ultraviolet convergent provided that αL > (d−2)/4, which corresponds

to αT < −1. For d = 4, we obtain αL > 1/2 as the condition for convergence of the integral.

Now consider the DS equation (10.7) for L(k2) in the infrared asymptotic limit,

CL(k2)1+αL = k2 −
2h̄g2N

CTCL (2π)4

∫

d4k1
k2k2

1 − (k · k1)
2

(k2
1)

2+αT (k2
2)

αL (k2
2 + k2)

, (11.6)

for d = 4. By power counting, the integral on the right has the power (k2)1−αT −αL . This

agrees with the power on the left, provided αT = 2αL, which is identical to the previous

equation. However we have also previously found αL > 0. In this case, the tree level term

k2 is dominant in the infrared, and the equation appears inconsistent. However the degree

of divergence of the integral is 2αL, so the integral diverges for αL > 0, and a subtraction

is required. The integral contains an explicit factor of k2, and the divergence is of the

form Bk2, where B is an infinite constant. We subtract the integrand at k = 0, which

makes the integral vanish more rapidly than k2, and add bk2 on the right, where b is an

arbitrary finite constant. The dominant terms are now the tree level term k2 and bk2.
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For the equation to be consistent, the subtraction term must precisely cancel the tree-level

term, so b = −1. This gives

CL(k2)1+αL =
2h̄g2N

CTCL (2π)4

∫

d4k1
k2k2

1 − (k · k1)
2

(k2
1)

2+αT

( 1

(k2
1)

αL k2
1

−
1

(k2
2)

αL (k2
2 + k2)

)

.

(11.7)

This integral is also convergent in the infrared for αT = −2αL < 0. The right hand side now

vanishes more rapidly than k2. This conclusion, agrees with the “horizon condition” [25],

and with the confinement criterion of Kugo and Ojima in the BRST framework [27], [28].

Conversely we could have imposed the horizon condition on the DS equation for L(k2),

and derived the suppression of the transverse propagator 1/T (k2) at low momentum.

The subtracted expression on the right is most simply evaluated by continuing in

space-time dimension d. In this case one can ignore the subtraction term, and evaluate the

unsubtracted integral with dimensional regularization for d < 4, and continue the resulting

expression to d = 4,

CL(k2)1+αL = −
2h̄g2N

CTCL (2π)d

∫

ddk1
k2k2

1 − (k · k1)
2

(k2
1)

2+αT (k2
2)

αL (k2
2 + k2)

. (11.8)

The denominator k2
2 +k2 results from the non-local expression for the vertex. One obtains

the corresponding equation for the ghost propagator in Faddeev-Popov theory, eq. (6.15)

of [6], from this equation by the substitution 2
k2
2
+k2 → 1

k2
2

.

By equating powers of k for general space-time dimension d, one again gets (11.5),

and we see that the DS equations for the transverse and longitudinal parts are consistent.

The degree of divergence of this integral is 2αL, and after one subtraction its degree of

divergence is 2αL − 2, so the subtracted integral is convergent provided that αL < 1, or

equivalently that αT > − 2 − (4 − d)/2. From this and our previous bound, we conclude

that for d = 4, this subtracted integral and (11.3) are both finite provided that αL is in

the range 1/2 < αL < 1, or equivalently that αT is in the range −2 < αT < −1. We write

the preceding equation as
CTC

2
L

h̄g2N
= IL, (11.9)

where IL is evaluated in Appendix F.

Upon comparison with (11.4), we obtain

IT (αL) = IL(αL) (11.10)
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which determines the critical exponent αL. From Appendix F, this gives, for d = 4,

Γ2(2 − αL) Γ(2αL − 1)

Γ2(1 + αL) Γ(4 − 2αL)
=

3 (−α2
L + 2αL + 2) Γ2(1 − αL) Γ(2αL + 1)

αL Γ(αL + 2)Γ(αL + 3)Γ(2 − 2αL)
. (11.11)

Both expressions are finite and positive, as they should be, for αL in the interval 1/2 <

αL < 1. Moreover at αL = 1/2, the left-hand side diverges whereas the right is finite.

On the other hand at αL = 1, the left-hand side is finite whereas the right diverges.

Consequently there is at least one root in the interval 1/2 < αL < 1. After cancelling

Γ-functions, the last two equations give the quartic equation

49α4
L − 189α3

L + 133α2
L + 117αL − 74 = 0. (11.12)

From a numerical investigation it appears that there is only one root in the interval 1/2 <

αL < 1, with the value
αL ≈ 0.5214602698

αT = −2αL ≈ −1.04292054.
(11.13)

12. Conclusion

We derived time-independent stochastic quantization from the principle of gauge

equivalence which states that probability distributions that give the same expectation

values for all gauge-invariant observables are physically indistiguishable. This quantiza-

tion is expressed by an equation for the Euclidean proabability distribution P (A) that is of

time-independent Fokker-Planck form, with a corresponding equation for the Minkowski

case. By making several changes of variable, we transformed this equation into an equation

of DS type, suitable for non-perturbative calculations. The most novel of these changes of

variable is accomplished when the equation for the quantum effective action Γ is exchanged

for an equation for the quantum effective drift force Qx. We then adopted a truncation

scheme and obtained a consistent Landau gauge limit, a→ 0, and found, remarkably, that

the longitudinal propagator function L(k2) that appears in the longitudinal part of the

gluon propagator DL = a/L(k2), does not decouple in the a → 0 limit, but plays a role

similar to the ghost in Faddeev-Popov theory.

We calculated the infrared critical exponents that characterize the asymptotic form

at low momentum of the transverse and longitudinal components of the gluon propagator

in Landau gauge, DT ∼ 1/(k2)1+αT , and DL ∼ a/(k2)1+αL , and obtained the values
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αL ≈ 0.5214602698 and αT = −2αL ≈ −1.04292054. In the Landau-gauge limit a→ 0 only

the transverse part survives. As a function of k, it vanishes at k = 0, albeit rather weakly,

DT ∼ (k2)−1−αT ∼ (k2)0.043. On the other hand, the longitudinal part of the propagator,

is long range, DL ∼ a/(k2)1.521. Qualitatively similar values have been obtained recently

for the infrared critical exponents of the gluon and ghost propagators in Landau gauge

from the DS equation in Faddeev-Popov theory, using a variety of approximations for the

vertex, [2], [3], [4], [5] and [6], in particular, [5] and [6], αT = −2aG = −1.1906, and

aG = 0.595353 respectively. As we have argued recently [6], these calculations in Faddeev-

Popov theory should be interpreted as including a cut-off at the Gribov horizon. This

makes them similar in spirit to the present calculation for which, as shown in sec. 3, the

probability also gets concentrated inside the Gribov horizon in the Landau gauge limit

a → 0. Reassuringly, the solutions of the DS equation in Faddeev-Popov theory and in

the present time-independent stochastic method are in satisfactory agreement.

We comment briefly on the physical significance of our results. (i) We have avoided

gauge fixing and instead derived the equation of time-independent stochastic quantization

from the principle of gauge equivalence, thereby overcoming the Gribov critique. Since

we do not gauge fix, we do not brutally eliminate “unphysical” variables and keep only

“physical” degrees of freedom, which would violate Singer’s theorem [29]. Instead, we

gently tame the gauge degrees of freedom by exploiting the principle of gauge equivalence.

(ii) We derived a set of equations of DS type that was solved approximately but non-

perturbatively in Landau gauge asymptotically at low momentum. (iii) The values we

obtained for the infra-red critical exponents of the gluon propagator in Landau gauge are

in satisfactory agreement with corresponding values in Faddeev-Popov theory, and also

with numerical simulations. (iv) A striking result of this investigation is that the invariant

longitudinal propagator function L(k2) does not decouple in stochastic quantization, even

though the longitudinal part of the gluon propagator DL = a/L(k2) vanishes with the

gauge parameter a in the Landau gauge limit a → 0. Indeed, because some vertices are

of order a−1, transverse gluons exchange longitudinal gluons as virtual particles, with an

amplitude that remains finite in the limit a → 0. Thus, while ghosts are absent in time-

independent stochastic quantization, they are replaced dynamically by the longitudinal

part of the gluon propagator in the Landau gauge limit. In fact, the DS equations (9.4)

and (10.7) for T (k2) and L(k2) bear a remarkable similarity to the DS equations for the

gluon and ghost propagators D and G in Landau gauge in Faddeev-Popov theory, with the
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correspondences D ↔ 1/T and G↔ 1/L. In both cases, it is the ghost loop or longitudinal-

gluon loop that gives the dominant contribution to the transverse-gluon inverse propagator

in the infrared region, and causes suppression of the would-be physical, transverse gluon

propagator at k = 0, a signal that the gluon has left the physical spectrum.

To conclude, we mention some challenging open problems. (i) The possibility of com-

parison with numerical simulations is an essential and promising aspect of the present

situation. Any DS calculation involves a truncation which remains an uncontrolled ap-

proximation, without further investigation. It may be controlled by varying the vertex

function [5], or by extending the calculation to include the vertex self-consistently. For-

tunately, comparison with numerical simulation provides an independent control. In this

regard we note that the stochastic quantization used here may be and, in fact, has been

effected on the lattice in numerical simulations by Nakamura and collaborators [51],[52],

[53], [54], [55]. A direct comparison with this data would require a solution of the DS

equations for finite gauge parameter a, or extrapolation of lattice data to a = 0. Natu-

rally, a comparison of numerical results with asymptotic infrared calculations also requires

control of finite-volume lattice artifacts. (ii) Conversely the results of the DS calculations

suggest new numerical calculations. In particular our prediction that, for small values of

the gauge parameter a, the longitudinal part of the gluon propagator is long range, should

be tested numerically. (iii) The present scheme is not based on a local action, but rather on

the DS equations of time-independent stochastic quantization. Renormalizability follows

from the indirect argument that correlators of the 4-dimensional time-independent formu-

lation used here coincide with the equal-time correlators of a local, 5-dimensional theory

whose renormalizability has been established [49]. The renormalization constants of the

5-dimensional theory were calculated some time ago at the one-loop level, and were found

to yield the usual β-function [57], [58], [46]. However a direct proof of renormalizability in

the present time-independent formulation remains a challenge. The Ward identity, derived

in Appendix C, is a first step. (iv) One should extend the solution obtained here for the

asymptotic infrared region to finite momentum k. (v) The Landau gauge is a singular

limit, a → 0, of the DS equations for finite gauge parameter a. It would be valuable to

also solve the DS equations for arbitrary, finite a. (vi) One should extend the solution

of the DS equations to include quarks. (vii) As we have explained, our results are in-

tuitively transparent and lend themselves to a simple confinement scenario in which the

would-be-physical transverse gluon leaves the physical spectrum. However it is clear that

our discussion of confinement remains at the level of a scenario because we have dealt
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here only with the gluon propagator which is a gauge-dependent quantity. This is only

a first step in a program, some of whose elements have just been indicated. Clearly the

goal is to calculate gauge-invariant quantities. Gauge-invariant states, the hadrons, ap-

pear as intermediate states in gluon-gluon and quark-anti-quark scattering amplitudes.

One must extend to this sector the solution of the DS equations obtained here, and of the

Bethe-Salpeter equations that follow from them.
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Appendix A. Time-independent Fokker-Planck equation for quarks

We extend to quarks the derivation of time-independent stochastic quantization from

the principle of gauge equivalence. Following the method of sec. 3, we seek a weight

function P = P (A,ψ, ψ̄) that depends on the gluon and quark and anti-quark fields. We

wish to establish a class of gauge-equivalent normalized distributions that includes the

formal gauge-invariant weight P = N exp(−S) as a limiting case. Here

S ≡ SYM +

∫

d4x ψ̄(m+ 6D)ψ, (A.1)

is the Euclidean action of gluons and quarks, 6D ≡ γµDµ = γµ(∂µ+gAa
µt

a), where {γµ, γν} =

2δµν , and the ta are the quark representation of the Lie algebra of the structure group,

[ta, tb] = fabctc. We take P to be the solution of HFPP = 0, where we now specify the

extended Fokker-Planck hamiltonian.

As in sec. 3, we take HFP to be of the form

HFP = Hinv − (v,G)†

= Hinv +

∫

d4x
( δ

δAa
µ

Dac
µ − g

δ

δψ
tcψ + g

δ

δψ̄
(ψ̄tc)

)

vc,
(A.2)

where Hinv is a gauge-invariant operator, specified below, that has exp(−S) as null vector,

Hinv exp(−S) = 0, and the Grassmannian deriveratives are left derivatives. Here

Ga(x) = − Dac
µ

δ

δAc
µ(x)

− g(taψ)
δ

δψ(x)
+ g(ψ̄ta)

δ

δψ̄(x)
(A.3)
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is the generator of local gauge transformations that satisfies

[Ga(x), Ab
µ(y)] = −Dab

µ δ(x− y)

[Ga(x), ψ(y)] = − g taψ(x) δ(x− y)

[Ga(x), ψ̄(y)] = g ψ̄(x)ta δ(x− y)

[Ga(x), Gb(y)] = δ(x− y) gfabcGc(x)

[Ga(x), Hinv] = 0.

(A.4)

With gauge-invariant observables defined by the condition Ga(x)W = 0, the proof of

sec. 3, that the expectation-value of gauge invariant observables 〈W 〉 =
∫

dAdψdψ̄ W P is

independent of v, applies here as well. As explained in sec. 3, we take va(x) = a−1∂λAλ(x),

where a is a gauge parameter.

There remains to specify Hinv. We suppose that it is a sum of gluon and quark and

anti-quark hamiltonians,

Hinv = H1 +H2 +H3 (A.5)

where H1 is the gauge-invariant gluon hamiltonian as in sec. 3,

H1 =

∫

d4x
δ

δA

(

−
δ

δA
−
δS

δA

)

. (A.6)

For the quark and anti-quark hamiltonians we take

H2 =

∫

d4x
δ

δψ
N2

( δ

δψ̄
+
δS

δψ̄

)

H3 =

∫

d4x
δ

δψ̄
N3

( δ

δψ
+
δS

δψ

)

,

(A.7)

where N2 and N3 are gauge-covariant kernels with engineering dimensions of mass. All

terms in HFP contain a derivative on the left, which assures that HFP has a null eigenvalue,

for we have
∫

dAdψdψ̄ HFPF = 0 for any F . The corresponding right eigenvector P that

satisfies HFPP = 0, is the physical distribution that we seek, that depends on the gauge

parameters. Each of the operators Hi satisfies Hi exp(−S) = 0, so also Hinv exp(−S) = 0.

This assures the applicability of the proof of sec. 3, namely that the normalized solutions

for different v are gauge equivalent, Pv(A) ∼ Pv′(A), and include N exp(−S) as a limiting

distribution.

We have obtained this result without any assumptions about the kernels N2 and N3,

apart from gauge covariance (and regularity). This would not be consistent unless the
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normalized solutions for different choices of the kernels give gauge-equivalent distributions

PN (A) ∼ PN ′(A) or, in other words, the parameters that specify N2 are and N3 are gauge

parameters. We prove this directly.

Let δN2 be an infinitesimal variation of N2. It induces a corresponding change in H2

δH2 =

∫

d4x
δ

δψ
δN2

( δ

δψ̄
+
δS

δψ̄

)

. (A.8)

The corresponding change in P satisfies δH2P +HFPδP = 0, so δP = − H−1
FPδH2P . Let

W be a gauge-invariant observable. We have

δ〈W 〉 =

∫

dAdψdψ̄ δP W

= −

∫

dAdψdψ̄ H−1
FPδH2P W

= −

∫

dAdψdψ̄ P δH
†
2 (H

†
FP)−1 W

= −

∫

dAdψdψ̄ P δH
†
2 (H

†
inv)

−1 W

= −

∫

dAdψdψ̄ δH2P (H
†
inv)

−1 W,

(A.9)

where we have used (H
†
FP)−1 W = (H

†
inv)

−1 W which holds for a gauge-invariant observ-

able, as was shown in sec. 3. Moreover δH
†
2 (H

†
inv)

−1 W is gauge invariant, so the last

expression is independent of the gauge parameter a, as was also shown in sec. 3, and we

may evaluate it for a→ ∞. We have

lim
a→∞

δH2P =

∫

d4x
δ

δψ
δN2

( δ

δψ̄
+
δS

δψ̄

)

lim
a→∞

P = 0, (A.10)

because lima→∞ P ∼ N exp(−S). Thus δ〈W 〉 vanishes, as asserted.

The quark action satisfies

Squ =

∫

d4x ψ̄(m+ 6D)ψ = −

∫

d4x ψC−1(m+ 6D)Cψ̄, (A.11)

where C is a numerical matrix that acts on spinor and group indices and satisfies C−1γµC =

−γtr
µ and C−1taC = −(ta)tr, so we have

δS

δψ̄(x)
= (m+ 6D)ψ(x)

δS

δψ(x)
= − C−1(m+ 6D)Cψ̄(x),

(A.12)
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where the Grassmannian derivatives are left derivatives. The most general expressions for

N2 and N3 that are local, gauge-covariant, and have dimension of mass are

N2 = m2 − b2 6D

N3 = − C−1(m3 − b3 6D)C,
(A.13)

where the mi and bi are gauge parameters. We expect that the kernel ultimately appears

in the denominator in loop integrals so, to improve convergence, we should take b2 6= 0 and

b3 6= 0. For the gauge choice to respect charge-conjugation invariance, we take b2 = b3,

and m1 = m2 = c m, which gives

H2 =

∫

d4x
δ

δψ
(c m− b 6D)

( δ

δψ̄
+ (m+ 6D)ψ

)

H3 =

∫

d4x
δ

δψ̄
(−1)C−1(c m− b 6D)C

( δ

δψ
+ (−1)C−1(m+ 6D)Cψ̄

)

,

(A.14)

where b and c are gauge parameters. This gauge choice also respects chiral symmetry in the

limit m→ 0. One may show that the eigenvalues of H2 and H3 are the eigenvalues of fermi

oscillators, with frequencies λn that are the eigenvalues of the operator (c m−b 6D)(m+ 6D),

which for b = c > 0, simplifies to b(m2− 6D2). In this case H2 and H3 have the unique

null eigenvector exp(−S), and all other their eigenvalues are strictly positive, as occurs for

H1. Indeed H1 satisfies

exp(S/2)H1 exp(−S/2) =

∫

d4x
( δ

δAx
− (1/2)

δS

δAx

)(

−
δ

δAx
− (1/2)

δS

δAx

)

, (A.15)

where the operator on the right is manifestly positive, with the unique null-vector

exp(−S/2). Thus H1 has the unique null-vector exp(−S), and all its other eigenvalues

are strictly positive. However we expect that b and c must be kept as independent con-

stants when needed as renormalization counter-terms.

Altogether, the total Fokker-Planck hamiltonian, including quarks, is given by

HFP =

∫

d4x
[ δ

δAµ

(

−
δ

δAµ
−

δS

δAµ

)

+
δ

δψ
(c m− b 6D)

( δ

δψ̄
ψ +

δS

δψ̄

)

+
δ

δψ̄
(−1)C−1(c m− b 6D)C

( δ

δψ
+
δS

δψ

)

+ a−1
( δ

δAa
µ

Dac
µ − g

δ

δψ
(tcψ) + g

δ

δψ̄
(ψ̄tc)

)

∂ ·Ac
]

,

(A.16)

where a > 0, b > 0 and c > 0 are gauge parameters.
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Appendix B. Time-independent stochastic quantization on the lattice

We briefly outline how to extend time-independent stochastic quantization to lattice

gauge theory. To each link (x, µ) of the lattice is associated a variable Ux,µ ∈ SU(N). These

variables are subject to the local gauge transformation Ux,µ → gUx,µ = g−1
x Ux,µgx+µ̂,

where gx ∈ SU(N) is associated to the site x of the lattice. Observables W (U) are invariant

under this transformation, W (gUx,µ) = W (Ux,µ). Expectation values are calculated by

〈W 〉 =
∫

dU W (U) PW (U), where dU is the product of Haar measure over all link variables

of the lattice, and PW = N exp(−SW ) is the normalized probability distribution associated

to the gauge-invariant Wilson action SW .

We shall exhibit a Fokker-Planck hamiltonian HFP for the lattice, such that the posi-

tive normalized solutions P toHFPP = 0 are gauge equivalent to PW , P ∼ PW . Let Ja
x,µ be

the Lie differential operator associated to the group variable on the link (x, µ), that satisfies

the Lie algebra commutation relations [Ja
x,µ, J

b
y,ν ] = δxy δµνf

abcJc
x,µ. And let Gx be the

generator of local gauge transformations that is defined by (1 +
∑

x ǫxGx)F (U) = F (gU),

where gx = 1 + ǫx is an infinitesimal local gauge transformation. These generators

satisfie the Lie algebra commutation relations of the local gauge group of the lattice

[Ga
x, G

b
y] = δxy fabcGc

x, and may be expressed as a linear combination of the J ’s. A

hamiltonian with the desired properties is given by

HFP = Hinv − (v,G)†

Hinv =
∑

x

Jx,µ( −Jx,µ − [Jx,µ, SW ] )

(v,G) =
∑

x

vxGx,

(B.1)

where † is the adjoint with respect to the inner product dU , and va
x is a site variable with

values in the Lie algebra. Indeed, the argument of sec. 3 holds here, with the substitution

SYM(A) → SW(U), and shows that the probability distributions Pv for different v, defined

by HFPP = 0, are gauge equivalent to each other Pv ∼ Pv′ and to PW . As in sec. 3, we

choose va
x(U) so the infinitesimal gauge transformation gx = 1 + ǫ tava

x is the direction of

steepest descent in gauge orbit directions of a minimizing functional F (U). A convenient

choice is F (U) =
∑

〈xy〉 tr(I − U〈xy〉), where the sum extends over all links 〈xy〉 of the

lattice.
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Appendix C. Ward Identity

In sec. 3 we showed that probability distributions Pv(A) for different v are gauge

equivalent, Pv(A) ∼ Pv′(A). Another way to make gauge equivalent distributions is by

making a local gauge transformation, because, for all gauge-invariant observables W (A),

this cannot change the expectation value
∫

dA W (A)Pv(A) =
∫

dA W (A)Pv(
gA), and

we have Pv(A) ∼ Pv(gA). If the class of gauge-equivalent distributions Pv(A) that was

introduced in sec. 3 is large enough, then the gauge transformation corresponds to a change

of v,

Pv(gA) = Pv′(A) (C.1)

for some v′. This is in fact the case, and provides a Ward identity.

To prove this, we apply the infinitesimal local gauge transformation 1 + (ǫ, G), where

(ǫ, G) ≡
∫

d4x ǫa(x)Ga(x), to the time-independent Fokker-Planck equation (3.5)and (3.6),

[1 + (ǫ, G)] [Hinv + (G, v)] Pv = 0. (C.2)

From the commutation relations

[(ǫ, G), Hinv] = 0

[(ǫ, G), Ga(x)] = −fabc ǫb(x) Gc(x),
(C.3)

we obtain

[(ǫ, G), (G, v)] = (G, δv), (C.4)

where

δva ≡ [(ǫ, G), va] + fabcǫbvc, (C.5)

and, to first order in ǫ,

[Hinv + (G, v + δv)] [1 + (ǫ, G)] Pv = 0. (C.6)

Note that while va(x) and ǫa(x) are both local gauge transformations, va(x) = va(x,A)

depends on A, but ǫa(x), by assumption, does not. By comparison with the defining

equation for the probability distribution Pv+δv,

[Hinv + (G, v + δv)] Pv+δv = 0, (C.7)

43



we conclude that the gauge-transformed probability distribution [1 + (ǫ, G)] Pv(A) =

Pv(A+Dǫ) coincides with Pv+δv,

Pv(A+Dǫ) = Pv+δv(A), (C.8)

where δv is given above. This states how a gauge transformation is absorbed by a change

in v, and provides the Ward identity.

This identity is inherited by the functionals we introduced, the quantum effective

action Γv and the quantum effective drift force Qv, and we have

Γv(A+Dǫ) = Γv+δv(A)

Qa
v(x,A+Dǫ) = Qa

v+δv(x,A)− fabcǫb(x)Qc
v+δv(x,A).

(C.9)

We now specialize to v = a−1∂ ·A, and obtain

δva = a−1∂ ·Dac(A) ǫc + a−1fabcǫb ∂ ·Ac

= a−1Dac(A) · ∂ ǫc = a−1[∂2ǫa + fabcAb
µ ∂µǫ

c].
(C.10)

Only the derivative of ǫ appears here because, for v = a−1∂ · A, the probability distribu-

tion Pv(A) is invariant under global (x-independent) gauge transformations. We further

specialize to a linear dependence of ǫ on x, ǫa(x) = ηa
µxµ, where the ηa

µ are infinitesimal

constants. In this case we have

δva = a−1fabcAb
µ ηc

µ. (C.11)

Although this breaks Lorentz invariance, it does not break translational invariance, so the

perturbed hamiltonian defined by

HFP + δHFP = Hinv + (G, v) + (G, δv)

= Hinv + a−1(G, ∂ ·A) + a−1(G,Aµ × ηµ),
(C.12)

where (Aµ × ηµ)a ≡ fabcAb
µη

c
µ, is translationally invariant, even though Aa

µ + Dac
µ ǫc =

Aa
µ + ηa

µ + fabcAb
µ η

c
νxν , has an explicit x-dependence. Moreover the inhomogeneous term

a−1∂2ǫ in δv vanishes with this choice of ǫ, so A = 0 remains the classical vacuum.

Without further calculation we conclude that the transformed quantum effective action

Γv(A+Dǫ) = Γv+δv(A) is a translationally invariant functional of A for v = a−1∂ ·A and

ǫa(x) = ηa
µxµ, with A = 0 as classical vacuum.

More generally, we note that the gauge field Aa
µ appears undifferentiated in δva =

a−1fabcAb
µ × ηc

µ, whereas it is differentiated in va = a−1∂ · Aa. This means that the

perturbation δHFP is softer than the unperturbed hamiltonian HFP or, in other words, less

divergent in the ultraviolet. If we calculate with the original hamiltonian, we get a certain

number of divergent constants in the correlators. The result of a gauge transformation

ǫa = ηa
µxµ on these correlators must agree with a calculation using the soft perturbation.

This constrains the divergent constants.
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Appendix D. Solution for Γ(4) and Γ(n)

The solution for Γ(4) and higher coefficient functions is similar to the solution for Γ(3)

found in sec. 7. We differentiate (6.3) with respect to Axi
four times and obtain, after

setting A = 0,

Γ(2)
x1,x (Γ(4)

x,x2,x3,x4
+Q(3)

x;x2,x3,x4
) +

∑

part(4, 1)

+ Γ(3)
x1,x2,x (Γ(3)

x,x3,x4
+Q(2)

x;x3,x4
) +

∑

part(4, 2) = 0,
(D.1)

where Γ(2) and Γ(3) are already known, and we have again used Γ(2) = −Q(1). Here
∑

part(n, n1) is the sum over all partitions of the set of n objects, x1, x2, ...xn, into subsets

of n1 and n2 = n− n1 objects. In terms of the fourier transforms

Q(3)a1a2a3a4

µ1µ2µ3µ4
(x1; x2, x3, x4) = (2π)−12

∫

d4k1d
4k3d

4k3d
4k4 exp(i

4
∑

i=1

ki · xi)

× δ(k1 + k2 + k3 + k4) Q̃
(3)a1a2a3a4

µ1µ2µ3µ4
(k1; k2, k3, k4)

(D.2)

Γ(4)a1a2a3a4

µ1µ2µ3µ4
(x1, x2, x3, x4) = (2π)−12

∫

d4k1d
4k3d

4k3d
4k4 exp(i

4
∑

i=1

ki · xi)

× δ(k1 + k2 + k3 + k4) Γ̃(4)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4),

(D.3)

where Q̃(3)a1a2a3a4
µ1µ2µ3µ4

(k1; k2, k3, k4) and Γ̃(4)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) are defined only for k1 +

k2 + k3 + k4 = 0, the equation for Γ̃(4) reads

Γ̃(2)
µ1ν1

(k1) Γ̃(4)a1a2a3a4
ν1µ2µ3µ4

(k1, k2, k3, k4) +
∑

part(4, 1) = − H(4)a1a2a3a4
µ1µ2µ3µ3

(k1, k2, k3, k4),

(D.4)

where

H(4)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) ≡ Γ̃(2)
µ1µ(k1) Q̃

(3)a1a2a3a4
µµ2µ3µ4

(k1; k2, k3, k4) +
∑

part(4, 1)

+R(4)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4)
(D.5)

R(4)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) ≡ Γ̃(3)a1a2a
µ1µ2µ(k1, k2,−k3 − k4)

× [ Γ̃(3)aa3a4
µµ3µ4

(−k1 − k2, k3, k4) + Q̃(2)aa3a4
µµ3µ4

(−k1 − k2; k3, k4) ]

+
∑

part(4, 2).

(D.6)

45



To solve (D.4), we project on each argument with a transverse transverse or longitu-

dinal projector to obtain

Γ̃(4)TTTTa1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) = − [T (k2
1) + T (k2

2) + T (k2
3) + T (k2

4)]
−1

×H(4)TTTTa1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4),
(D.7)

Γ̃(4)LTTTa1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) = − [a−1L(k2
1) + T (k2

2) + T (k2
3) + T (k2

4)]
−1

×H(4)LTTTa1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4),
(D.8)

etc.

The formula for Γ(n) for arbitrary n is similar. Each Γ(n) is expressed explicity and

uniquely in terms of Q(n−1) and of Γ(2) to Γ(n−1) which are already known. It is given

by a symmetrized sum of products of two factors, as in eqs. (D.5) and (D.6), to which

is applied a transverse or longitudinal projector onto each argument, and a division by
∑n

i=1 Γ
(2)
i (k2

i ), where Γ
(2)
i (k2) = T(k2) or Γ

(2)
i (k2) = a−1L(k2). This gives all the Γ(n)

uniquely in terms of Q(1) to Q(n−1).

Appendix E. Evaluation of Γ
(3)
gt

We evaluate Γ
(3)
gt , using the formulas of sec. 7, with the substitutions (9.14).

From (7.15) and (8.6), we obtain

H(3)
µ1µ2µ3

(k1, k2, k3) = a−1Γ̃(2)
µ1µ(k1) K̃

(2)
gt µµ2µ3

(k1; k2, k3) + (cyclic)

= ia−1g
(

(k3)µ3
[ Γ̃(2)

µ1µ2
(k1) − (1 ↔ 2) ] + (cyclic)

)

.
(E.1)

We apply transverse or longitudinal projectors to each Lorentz index, and use

Γ̃
(2)
λµ(k) = T (k2)PT

λµ(k) + a−1L(k2)PL
λµ(k) to obtain

H(3)T T T
µ1µ2µ3

(k1, k2, k3) = 0,

H(3)T T L
µ1µ2µ3

(k1, k2, k3) = ia−1g (T1 − T2) (k3)µ3
[PT(k1)P

T(k2)]µ1µ2
,

H(3)T L L
µ1µ2µ3

(k1, k2, k3) = ia−1g
(

(a−1L3 − T1) (k2)µ2
[PT(k1)P

L(k3)]µ1µ3
− (2 ↔ 3)

)

H(3)L L L
µ1µ2µ3

(k1, k2, k3) = ia−2g
(

(L2 − L3) (k1)µ1
[PL(k2)P

L(k3)]µ2µ3
+ cyclic

)

,

(E.2)
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where we have used the notation Ti ≡ T (k2
i ) and Li ≡ L(k2

i ). From (7.16) and (7.17), we

obtain finally

Γ̃
(3)
gt

T T T
µ1µ2µ3

(k1, k2, k3) = 0,

Γ̃
(3)
gt

T T L
µ1µ2µ3

(k1, k2, k3) = − ig
T1 − T2

aT1 + aT2 + L3
(k3)µ3

[PT(k1)P
T(k2)]µ1µ2

,

Γ̃
(3)
gt

T L L
µ1µ2µ3

(k1, k2, k3) = − ia−1g
( L3 − aT1

aT1 + L2 + L3
(k2)µ2

[PT(k1)P
L(k3)]µ1µ3

−
L2 − aT1

aT1 + L2 + L3
(k3)µ3

[PT(k1)P
L(k2)]µ1µ2

)

,

Γ̃
(3)
gt

L L L
µ1µ2µ3

(k1, k2, k3) = − ia−1g
( L2 − L3

L1 + L2 + L3
(k1)µ1

[PL(k2)P
L(k3)]µ2µ3

+ (cyclic)
)

.

(E.3)

Appendix F. Evaluation of loop integrals

We evaluate the integral that appears in (11.4) namely

IT ≡
1

(k2)αT +2 (d− 1) (2π)d

∫

ddk1
k2
1 k

2 − (k1 · k)
2

(k2
1)

1+αL [(k − k1)2]1+αL
. (F.1)

We write this as

IT =
1

(k2)αT +2 (d− 1) Γ2(1 + αL)

∫ ∞

0

dαdβ ααL βαL RT , (F.2)

where

RT ≡ (2π)−d

∫

ddk1 [ k2
1 k

2 − (k1 · k)
2 ] exp[ − αk2

1 − β(k1 − k)2 ]. (F.3)

We complete the square in the exponent,

αk2
1 + β(k1 − k)2 = (α+ β)p2 + (α+ β)−1αβk2,

where p = k1 − (α+ β)−1βk, and obtain

RT = exp[ − (α+ β)−1αβk2 ] (2π)−d

∫

ddp [ p2 k2 − (p · k)2 ] exp[ − (α+ β)p2 ]

=
(d− 1) k2

2 (4π)d/2 (α+ β)1+d/2
exp[ − (α+ β)−1αβk2 ].

(F.4)

This gives

IT =
1

2 (4π)d/2(k2)αT +1 Γ2(1 + αL)
ST , (F.5)
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where

ST =

∫ ∞

0

dαdβ
ααL βαL

(α+ β)1+d/2
exp[ − (α+ β)−1αβk2 ]. (F.6)

We insert the identity 1 =
∫ ∞

0
dσ δ(α+β−σ), and change variables according to α = σα′

and β = σβ′. This gives, after dropping primes,

ST =

∫ ∞

0

dαdβdσ δ(α+ β − 1) ααL βαLσ2αL−d/2 exp[ − αβσk2 ]

= (k2)d/2−2αL−1 Γ(2αL + 1 − d/2)

∫ ∞

0

dαdβ δ(α+ β − 1) αd/2−αL−1 βd/2−αL−1

= (k2)d/2−2αL−1 Γ(2αL + 1 − d/2) Γ2(d/2 − αL)

Γ(d− 2αL)
.

(F.7)

We obtain finally,

IT =
Γ(2αL + 1 − d/2) Γ2(d/2 − αL)

2 (4π)d/2 Γ2(1 + αL) Γ(d− 2αL)

=
Γ(2αL − 1) Γ2(2 − αL)

2 (4π)2 Γ2(1 + αL) Γ(4 − 2αL)
,

(F.8)

for d = 4.

We also evaluate the integral that appears in (11.9),

IL ≡
− 2

(k2)1+αL (2π)d

∫

ddk1
k2k2

1 − (k · k1)
2

(k2
1)

2+αT [(k1 − k)2]αL [(k1 − k)2 + k2]
. (F.9)

It contains the denominator [(k1 − k)2 + k2] that comes from the non-local vertex. This

integral is convergent in the ultraviolet for d < 4 + 2αT + 2αL. We shall evaluate it for d

satisfying this condition, and then continue in d. We write it as

IL =
− 2

(k2)1+αLΓ(2 + αT ) Γ(αL)

∫ ∞

0

dαdβdγ α1+αT βαL−1 exp(−γk2) RL, (F.10)

where

RL ≡ (2π)−d

∫

ddk1 [ k2
1 k

2 − (k1 · k)
2 ] exp[ − αk2

1 − (β + γ)(k1 − k)2 ]. (F.11)

We complete the square in the exponent,

αk2
1 + (β + γ)(k1 − k)2 = (α+ β + γ)p2 + (α+ β + γ)−1α(β + γ)k2,
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where p = k1 − (α+ β + γ)−1(β + γ)k, and obtain

RL = exp[ − (α+ β + γ)−1α(β + γ) k2 ]

× (2π)−d

∫

ddp [ p2 k2 − (p · k)2 ] exp[ − (α+ β + γ)p2 ]

=
(d− 1) k2

2 (4π)d/2 (α+ β + γ)1+d/2
exp[ − (α+ β + γ)−1α(β + γ)k2 ].

(F.12)

This gives

IL = −
(d− 1)

(k2)αL (4π)d/2 Γ(2 + αT )Γ(αL)
SL, (F.13)

where

SL =

∫ ∞

0

dαdβdγ
α1+αT βαL−1

(α+ β + γ)1+d/2
exp[ − γk2 − (α+ β + γ)−1α(β + γ)k2 ]. (F.14)

We insert the identity 1 =
∫ ∞

0
dσ δ(α + β + γ − σ), and change variables according to

α = σα′, β = σβ′ and γ = σγ′. This gives, after dropping primes,

SL =

∫ ∞

0

dαdβdγdσ δ(α+ β + γ − 1) α1+αT βαL−1σ1+αT +αL−d/2

× exp{ −σ[γ + α(β + γ)]k2}

= (k2)−αT −αL−2+d/2 Γ(2 + αT + αL − d/2) ML,

(F.15)

The argument of the Γ-function is positive in the region of convergence of the integral,

d < 4 + 2αT + 2αL. Here ML is the finite integral

ML ≡

∫ ∞

0

dαdβdγ δ(α+ β + γ − 1) α1+αT βαL−1[α(β + γ) + γ]αL

=

∫ 1

0

dβ

∫ 1−β

0

dα α1+αT βαL−1(1 − α2 − β)αL ,

(F.16)

where we have used αT + 2αL = − (4 − d)/2. This gives

IL = −
(d− 1) Γ(−αL)

(4π)d/2 Γ(2 + αT )Γ(αL)
ML

=
(d− 1) Γ(1 − αL)

(4π)d/2 Γ(2 + αT )Γ(1 + αL)
ML.

(F.17)

Note that IL is negative in the region of convergence of the integral, but after the contin-

uation in d, it is positive.
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To evaluate ML we change variable to x = α2, and obtain

ML = (1/2)

∫ 1

0

dβ

∫ (1−β)2

0

dx xαT /2 βαL−1(1 − β − x)αL , (F.18)

and upon changing variables to x = (1 − β)y, we get

ML = (1/2)

∫ 1

0

dβ

∫ 1−β

0

dy yαT /2 βαL−1(1 − β)1+αL+αT /2(1 − y)αL . (F.19)

We again use αT + 2αL = − (4 − d)/2 to write this as

ML = (1/2)

∫ 1

0

dy yαT /2(1 − y)αL

∫ 1−y

0

dβ βαL−1(1 − β)d/4. (F.20)

This is integrable by quadrature for d = 4, and in this case it gives

ML = (1/2)

∫ 1

0

dy y−αL

( (1 − y)2αL

αL
−

(1 − y)2αL+1

αL + 1

)

= (1/2)
(Γ(1 − αL) Γ(1 + 2αL)

αL Γ(2 + αL)
−

Γ(1 − αL) Γ(2 + 2αL)

(αL + 1) Γ(3 + αL)

)

=
(−α2

L + 2αL + 2) Γ(1 − αL) Γ(2αL + 1)

2αL(αL + 1) Γ(αL + 3)
,

(F.21)

where we used αT = −2αL. This gives finally

IL =
3 (−α2

L + 2αL + 2) Γ2(1 − αL) Γ(2αL + 1)

2 (4π)2 αL Γ(2 − 2αL)Γ(αL + 2) Γ(αL + 3)
. (F.22)
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21-27, 1989, Plenum (N.Y.), P. Damgaard, H. Hüffel and A. Rosenblum, Eds.
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Figure Captions

Fig. 1. Fig. 1. Diagrammatic representation of the functional DS equation for the quan-

tum effective drift force, Q(A), in the presence of external sources A, eq. (6.1).

The vertices are the tree-level vertices of the drift force K. The internal lines

represent the exact gluon propagator D(A) in the presence of the external source.

The circle is the exact 3-gluon vertex of the quantum effective action Γ(A) in the

presence of the external source.

Fig. 2. Fig. 2. Diagrammatic representation of the DS equation for the gluon propagator,

eq. (8.1). The vertices are the tree level vertices of the drift force K. The internal

lines are the exact gluon propagator D with sources set to 0. The circles represent

the exact 3 and 4-gluon vertices of the quantum effective action Γ, with sources

set to 0.
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